

VK Multimedia Information Systems

Mathias Lux, mlux@itec.uni-klu.ac.at

Agenda

- Topics & goals
- Modalities & examination
- Schedule

- What is information?
- What are information systems?
- The information overload
- Current state in MuMe consumption

C.V.

- Technische Mathematik an der TU Graz
- Doktoratsstudium Telematik

- 98-01 Entwicklung von Web-Applikationen
- 01-06 Know-Center in Graz (KPlus)
- 05-06 Ass. am KMI / TU Graz
- 06- ... Ass. am ITEC / Uni Klagenfurt

Course Topics

Multimedia Databases

Multimedia Management

Social Media Sharing

Video Analysis

Metadata

Data Mining

Digital Audio

Information Retrieval

Social Networks

Image Processing

Retrieval Evaluation

Goals I

Basic (and a little more) understanding of

- Multimedia retrieval
- Multimedia analysis
 - images in the spatial domain
 - audio & video processing
- Multimedia databases & meta data

Goals II

- Overview on state of the art
 - who is who in research
 - what to read if I want to know more?
 - available tools in development
 - de facto & de jure standards

Goals III

- Providing a solid base for
 - further research,
 - consulting and
 - practical development
- in the area of
 - multimedia information retrieval
 - multimedia information systems
- and: hands on experience!

Modalities

Multimedia Information Systems ist eine "prüfungsimmanente Lehrveranstaltung"

A positive grade is based on

- some few mandatory exercises / readings
- ongoing collaboration
- a mid term and a final project

Modalities

Mid term projects are

- The same for everyone
- A simple VIR system + evaluation

Final projects are

- Practical implementations of MMIS
- Research work & studies

Projects topics will be

- ... assigned after Easter holidays
- ... assigned to groups or individual students

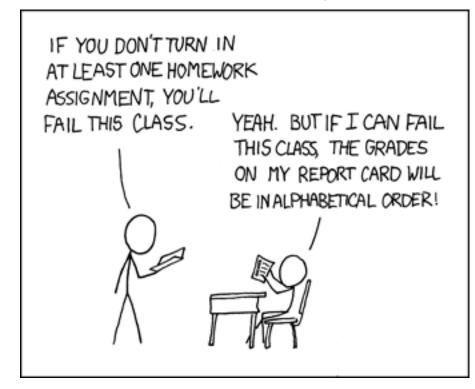
Team Work

- Preferably teams of 2 students
- TEAM = "Toll-Ein-Anderer-Machts"?

Projects

Topics:

- Scenic View Finder
 - Android image search application
- Lire Web demo
 - Web based demo of Lire features
- Additions to Lire
 - Extension of the existing library, eg. JNI wrappers for OpenCV, face detection based on OpenIMAJ etc.
- Near duplicate search in PDF images
 - Tracking the use of assets in documents
- or: Bring along you own Topic


Grades

Grade is derived from:

http://www.xkcd.com

- 1/4 Exercises
 - Pen & paper
 - Readings
- 1/2 Project
 - ¼ each
 - Implementation
- 1/4 Presentation

Schedule

- Introduction, motivation, information theory & systems
- Information retrieval
- Web based IR, PageRank, HITS
- Network analysis & social networks (guest lecture)
- Multimedia meta data
- Image analysis and content based image retrieval
- Audio & sound analysis
- Video information systems
- Multimedia databases

Questions?

Any questions regarding organizational issues left?

Agenda

- What is information?
- What are information systems?
- The information overload
- Current state in MuMe consumption

What is Information?

Definition of Aamondt and Nygard (1995):

- Data
- Information
- Knowledge

Aamodt, A. & Nygard, M. "Different roles and mutual dependencies of data, information, and knowledge - an AI perspective on their integration" Data Knowl. Eng., Elsevier Science Publishers B. V., 1995, 16, 191-222

Data

Aamondt und Nygard (1995)

Data are syntactic entities

- Patterns without meaning
- Input to an interpretation process

Example:

Bits & Bytes of a JPEG encoded image

Information

Aamondt und Nygard (1995)

Information is interpreted data

- Information is data with meaning
- Output from interpretation
- Input to knowledge based process

Example:

Decoded (and displayed) JPEG image

Knowledge

Aamondt und Nygard (1995)

Knowledge is learned information

- Incorporated in an agents (software / human) reasoning resources
- Ready for active use
- Output of learning process

Example:

There is a dog shown on the JPEG image

What is Information?

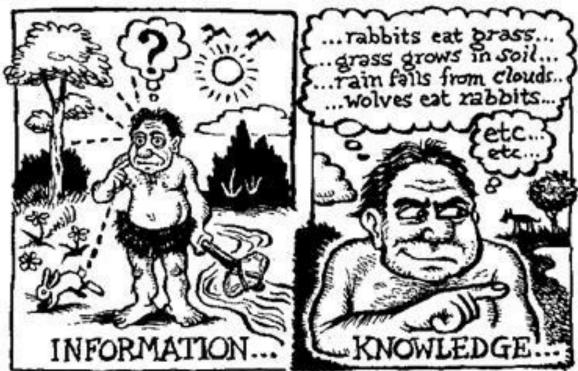
Definition of Zeleny (1987):

- Data
- Information
- Knowledge
- Wisdom

Zeleny, M. "Management Support Systems: Towards Integrated Knowledge Management" Human Systems Management, 1987, 7, 59-70

What is Information?

TOM DIMENSEY



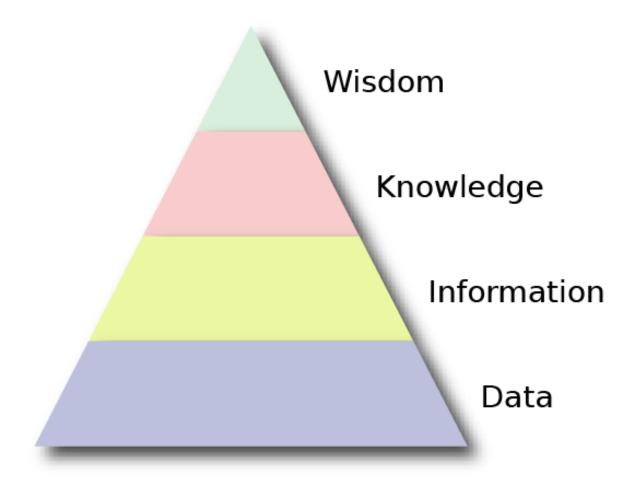


Image originally published in the December 1982 issue of THE FUTURIST, taken from http://www-personal.si.umich.edu/~nsharma/dikw_origin.htm

The DIKW Hierarchy

The DIKW Hierarchy

Definition of the DIKW levels:

Data	Know nothing
Information	Know what
Knowledge	Know how
Wisdom	Know why

Modified DIKW (IBM)

Available results:

Data	Information	Knowledge	Intelligence		
Operating with:					
Bitstreams and Raw Data	Terms and Features	Conceptual Models and Structure	Semantics		

Utility and benefits:

Technical availability and accessability of content	Selecting and viewing content in the context of interest	Revealing of unknown, implicitly present concepts and relations	Understanding of meanings and relationships
--	--	--	---

Key enabling technologies:

Access, gathering and storing	Feature extraction (preprocessing) and retrieval	data mining and knowledge representation	Presentation, visualization and interaction		
→ Semantic ← Gap					

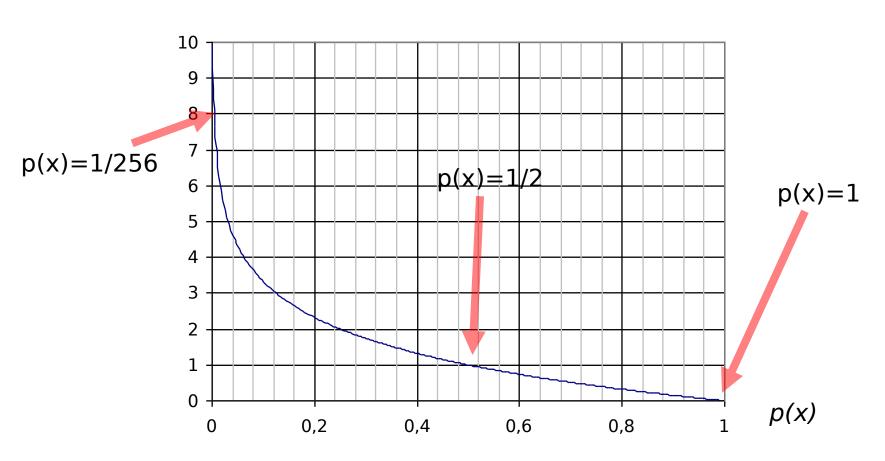
Machine Domain

Human Domain

What is Information?

Shannon's information theory

- Problem: communication over a noisy channel
- Fundamental finding:
 - Information content (measured in bits) of an event (e.g. letter) depends on the entropy (probability of occurrence)


$$I(A_n) = \log_2\left(\frac{1}{P(A_n)}\right) = -\log_2(P(A_n))$$

Shannon's Information Theory

Anzahl der Bits

Grice's Maxims of Conversation

- As informative as required
- As correct as possible
- Relevant to the aims of the conversation
- Contribution should be clear, unambiguous and concise

Haupmann, A. G. & Witbrock, M. J. "Story Segmentation and Detection of Commercials in Broadcast News Video" ADL '98: Proceedings of the Advances in Digital Libraries Conference, IEEE Computer Society, 1998

Agenda

- What is information?
- What are information systems?
- Information overload
- Current state in MuMe consumption

What are Information Systems?

- Systems for handling information
 - collect, store & organize
 - process, disseminate & transmit
- Three main parts in these systems
 - people,
 - machines &
 - methods

MEMEX

Memory Extender - Vannevar Bush

- Published in 1945 (Atlantic Monthly)
- An electromechanical device for
 - viewing books and films
 - adding information and comments
 - interlinking information
 - browsing links
- MEMEX is an early hypertext system

Geographic IS

- Focus on spatially referenced data
 - coordinates, height
 - distance, inclusion, neighboring
 - hierarchical organization

taken from Google Maps

Multimedia IS

- Focus on multimedia data & meta data
 - storage, transmission
 - search & retrieval
 - organization & dissemination
- Media types
 - textual / visual / auditive / haptic / olfactory
 - rastered or rendered / modelled
 - Midi vs. MP3
 - VRML vs. PNG
 - LASER vs. MPEG-2

Agenda

- What is information?
- What are information systems?
- Information overload
- Current state in MuMe consumption

Information Overload

- 5 Exabytes of new information in 2002.
 - 92% of the new information was stored on magnetic media, mostly in hard disks.
 - that's 800 MB per person on the globe
 - that's 37.000 times the LoC
 - that's 30% more than in 1999

Lyman, Peter and Hal R. Varian, "How Much Information", 2003. Retrieved from http://www.sims.berkeley.edu/how-much-info-2003 on [2007-02-07]

Information Overload

- 18 Exabytes of new information in information flow in 2002
- 98% of new information generated by phone calls
- Most radio and TV broadcast content is not new information.
 - ~ 70 out of 320 million h of radio is new, that's 3.500 TB
 - $^{\sim}$ 31 out of 123 million h of TV are new, that's 70.000 TB

Information Overload

Information Flow (ctd.)

- IM: 5 billion messages / day or 274 TB p.a.
- Email: 400.000 TB p.a.
- P2P: growing, but not yet estimated,
 - significant traffic has been observed on different backbones
 - Ranges from 20%-60% are mentioned

Information Usage

An average American adult:

- Telephone 16.17 hours a month
- Radio 90 hours a month
- TV 131 hours a month
- 53% of the U.S. uses the Internet
 - 25.5 h / month at home
 - ~ 74.5 h / month at work

Agenda

- What is information?
- What are information systems?
- Information overload
- Current state in MuMe consumption

Current State in MuMe Consumption

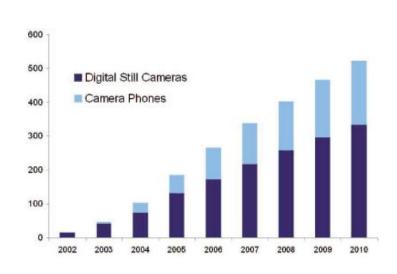
- Digital photography
 - still images
- Digital video in general
 - streaming and download

Digital Imaging Devices (global)

First question: how many devices exist?

Device	# in 2006
digital cameras	400 * 106
camera phones	600 * 106

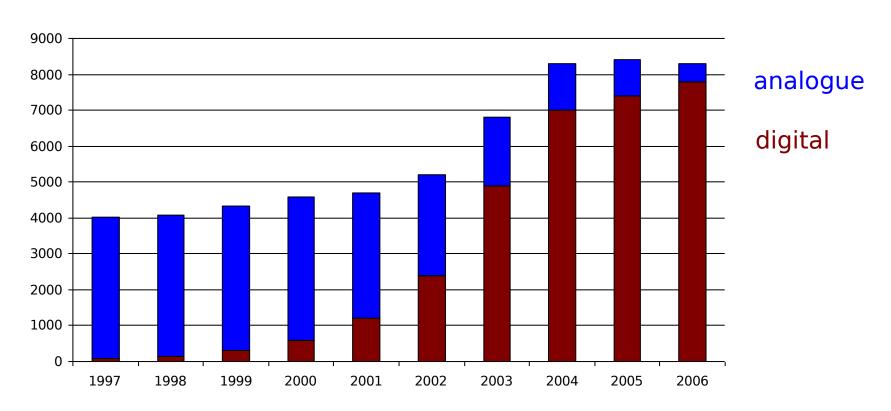
Source: IDC Study "Expanding Digital Universe" http://www.emc.com/about/destination/digital_universe/

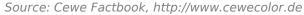


Number of Digital Photos (global)

- Estimate 2006
 - > 150 billion photos from cameras
 - > 100 billion photos from camera phones

- Forecast 2010
 - > 500 billion photos
 - + increased resolution


Source: IDC Study "Expanding Digital Universe" http://www.emc.com/about/destination/digital univ



Digital Imaging Devices (Germany)

Still image cameras sold in Germany (thousands)

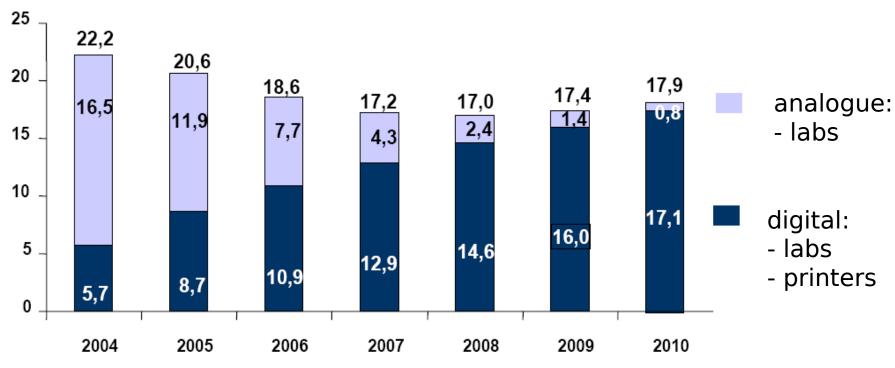
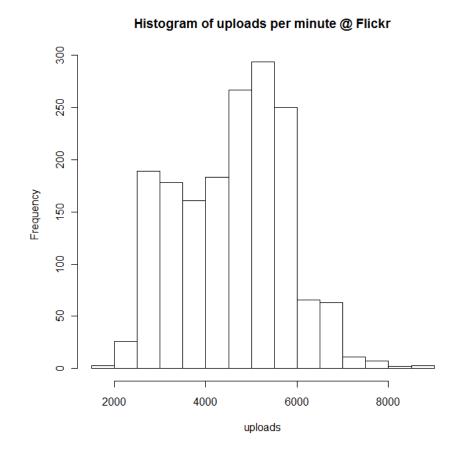


Photo prints market (Western Europe)

Photo prints forecast (in billions)

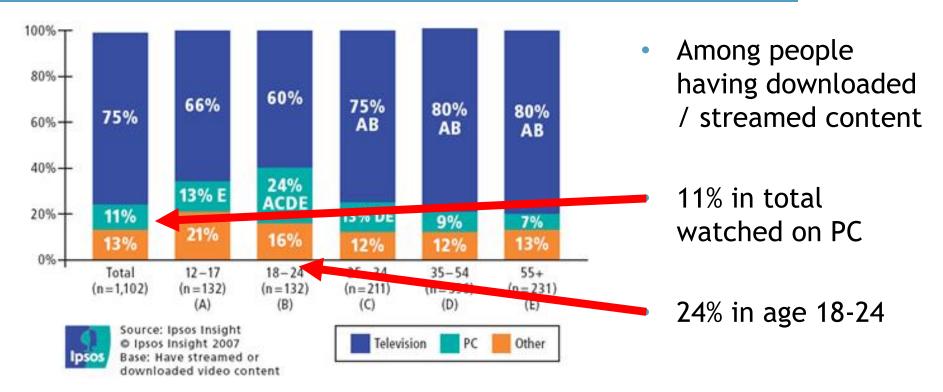


Source: Cewe Factbook, http://www.cewecolor.de

Flickr

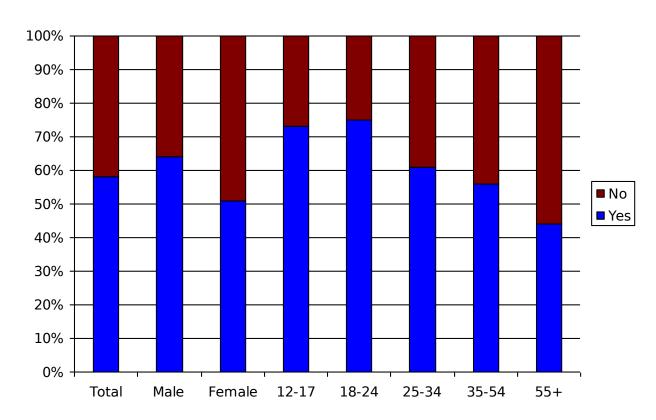
- 3 billionth upload in November 2008
- Currently ~4,800 uploads per minute

Content



- What is information?
- What are information systems?
- Information Overload
- Current state in MuMe consumption
 - digital photography
 - digital video in general

Where video content is watched? (US, 2007)



Ever Streamed a File Off of the Internet? (US, 2007)

- 75% of the 12-24 years old.
- More than half in total.

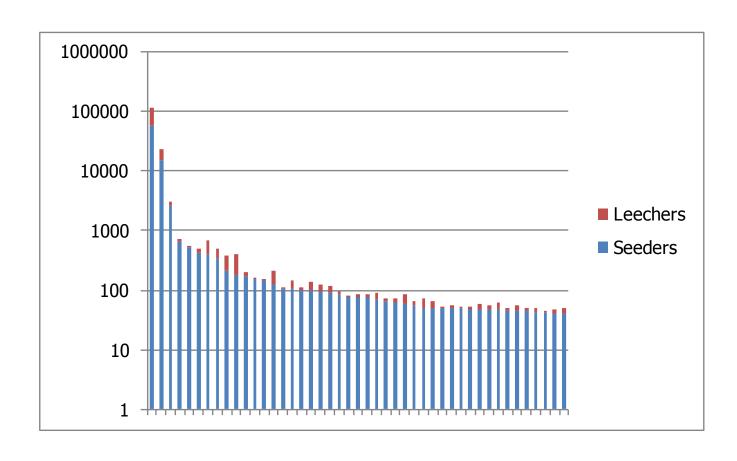
Source: Ipsos Insight's 2007 MOTION Study - http://www.ipsosinsight.com/pressrelease.aspx?id=350

Short vs. Long Clips (US, 2007)

- Short clips are preferred
 - 3/4 of streamers have streamed short news or sports clips
 - 2/3 of streamers have streamed amateur or homemade clips
- Also due to YouTube ...
 - 40% of the streamers use YouTube
 - Common restrictions in video size & length

Most Common Barrieres for payed DLs (US, 2007)

- Unwillingness to pay for this content,
- Difficulty or inability to
 - burn these files onto DVD
 - watch this content on their living room TV.


But there are also benefits in the future:

- 24/7 access
- reasonable fees or free (ad supported)

Bittorrent Movies (query: jaybob, 2011-03-08)

Bittorrent Movies (query: jaybob, 2011-03-08)

	Seeders	Leechers
Toy Story 3.DVDScr.XviD-Jaybob	58805	58814
Due Date {2010} DVDRIP. Jaybob	15369	8372
Knight And Day 2010 DVDRip Xvid-Jaybob	2625	479
Killers {2010} DVDRIP Jaybob	658	60
Marmaduke {2010} DVDRIP. Jaybob	519	37
Why Did I Get Married Too ? [2010] DVDRIP Jaybob	435	52
Main Street {2010} DVDRIP. Jaybob	404	290
The Fourth Kind {2009} DVDRIP jaybob	348	147
Inhale {2010} DVDRIP. Jaybob	213	167
TRON Legacy {2010} DVDRIP Jaybob	177	224
Dog Pound [2010] DVDRIP XVID Jaybob	170	27
The Karate Kid 2010 DVDRIP Jaybob	155	9
The Joneses {2009} DVDRIP Jaybob	143	15
How To Make Love To A Woman {2010} DVDRIP. Jaybob	127	87
Nanny McPhee Returns {2010} DVDRIP Jaybob	107	6
The Tournament {2009} DVDRIP Jaybob	105	43
Batman Under the Red Hood {2010} DVDRIP Jaybob	103	6
Basement [2010] DVDRIP XVID Jaybob	101	34
My Sister's Keeper {2009} DVDRIP Jaybob	94	31
Trick R Treat {2009} DVDRIP Jaybob	92	23
Twelve {2010} DVDRIP Jaybob (unrated)	87	6
A Nightmare On Elm Street {2010} DVDRIP Jaybob	79	3

Getting started with Lire

- Check if already have Java installed
 - 1. On windows open a command prompt
 - e.g. by hitting the Windows key and the "r" key at the same time and entering 'cmd' into the pop-up
 - 2. Type in 'java -version' and you should see something like this:

```
C:\Temp>java -version
java version "1.6.0_23"
Java(TM) SE Runtime Environment (build 1.6.0_23-b05)
Java HotSpot(TM) 64-Bit Server VM (build 19.0-b09, mixed mode)
```


Getting started with Lire

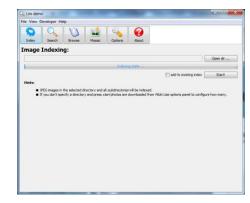
- If
 - you do not have Java installed or
 - the version is smaller than 1.6.0,
- then
 - you need to download and install Java
- Download & install Java
 - JDK recommended
 - http://www.oracle.com/technetwork/java/javase/do wnloads/index.html

Getting started with Lire

- Download & install Java
 - Using the JDK (instead of JRE) recommended
 - The JDK includes all development tools
 - http://www.oracle.com/technetwork/java/javase/ downloads/index.html

Download & Install LireDemo

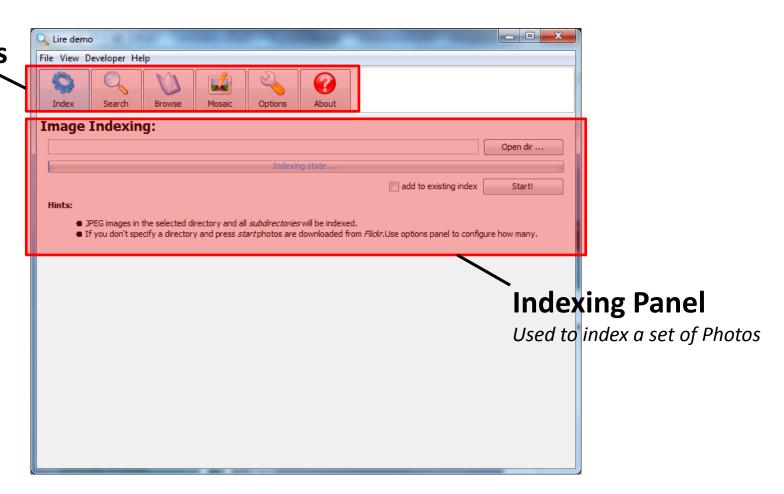
- Download the most recent version of LireDemo
 - http://sourceforge.net/projects/caliph-emir/files/Lire/
- Unzip the files to a directory of your choice



Run LireDemo

- Start LireDemo by
 - Either double click on the file "Liredemo.jar"
 - Or by typing in "java –jar LireDemo.jar" in the command prompt.
- Either way a window like this one should

appear:

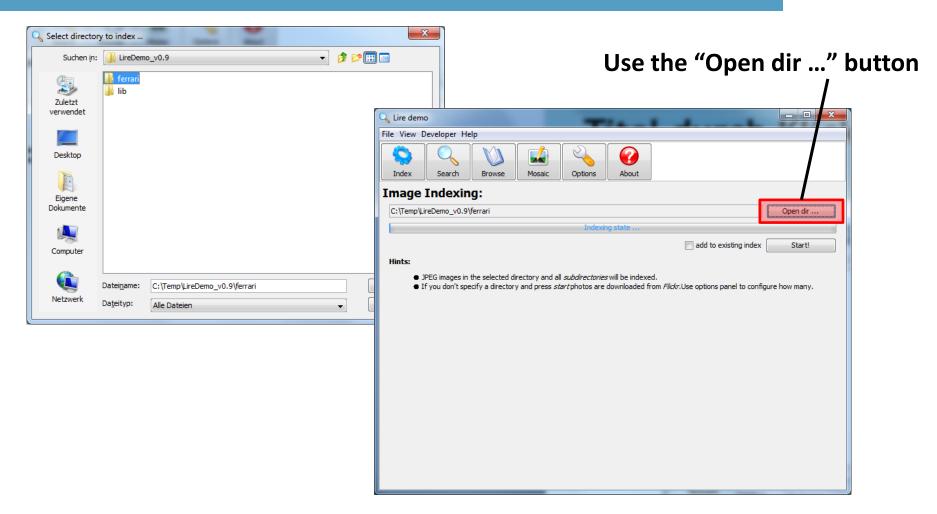


LireDemo explained

Main Tasks

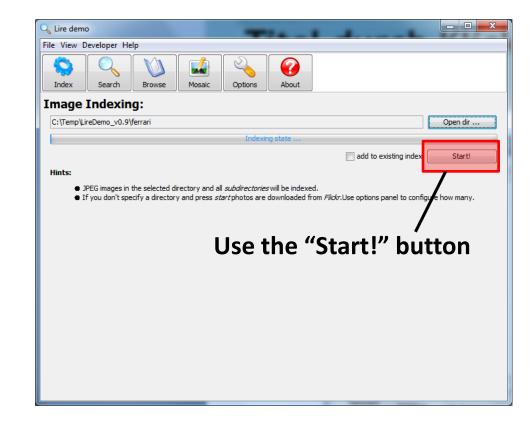
Used to switch between panels

1st Task: Index Photos



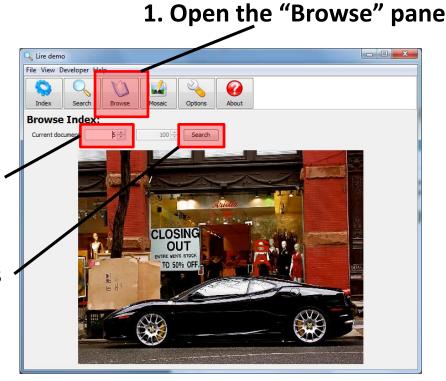
- Download the test data set from the course web page.
 - http://www.itec.uni-klu.ac.at/~mlux/wiki/doku.php?id=courses:mmisss12
- Unzip the test data set to a directory of your choice.
- Use the "Open dir ..." button of LireDemo to navigate to the unzipped photos.
 - Select the upper level directory "ferrari"

1st Task: Index Photos



1st Task: Index Photos

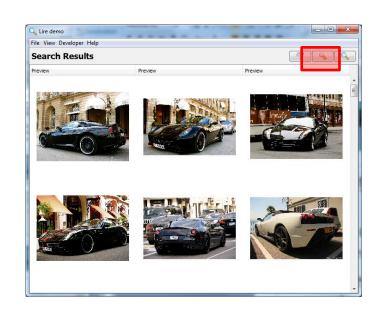
- Use the "Start!" button to start the indexing process.
- Wait until the progress bar says "Finished"
- This may take up to several minutes, depending on the computer you are using.



2nd Task: Browse the Index

- 1. Open the browse panel
- 2. Scan through the indexed photos
- 3. Trigger a search process
 - 2. Use the spinner to scan through the photos
 - 3. Trigger a search process

3rd Task: Scan the Results


- Investigate the results using the scroll bar.
 - Right click on an image opens your systems image viewer
- Double click on a search result triggers another search with the clicked image as query image.

4th Task: Try other image features

- Click the options button to go to the "Options" panel
- Select another type of "IndexSearcher" there
- Go back to the "Browse" panel and start another search on the same image as before
- Revisit the results for different IndexSearchers and compare the results.

Readings

C.J. van Rijsbergen: *Information Retrieval - Introduction*, London, Butterworth, 1979

Available on homepage: mmis08 / multimedia

Your task:

- Read + answer questions
- Send me an email with the answers until next course.

Questions:

- What is the difference between Data Retrieval and Information Retrieval?
- What does "relevance" mean in the context of Information Retrieval?

Your Tasks ...

- Get started with Lire
- Read the Introduction to Rijsbergen's book

Thanks ...

... for your attention!

