

VK Multimedia Information Systems

Mathias Lux, mlux@itec.uni-klu.ac.at

Dienstags, 16.00 Uhr c.t., E.2.69

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0

Content

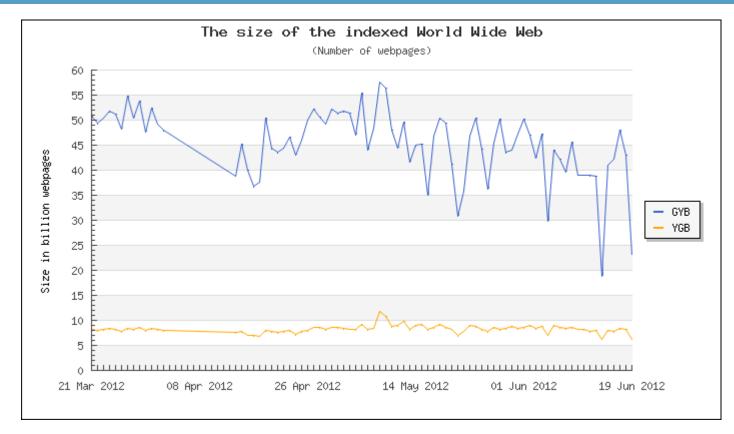
Introduction

- Common Architecture
- Ranking
 - PageRank
 - HITS
- Application: Nutch

ITEC, Klagenfurt University, Austria - Multimedia Information Systems

Retrieval in the WWW

- General Retrieval is based on content
 Represented e.g. by terms, keywords ...
- What is different with the WWW?
 - Structured text (markup)
 - Hypermedia (links)
 - Heterogeneous formats (gif, pdf, flv, ...)
 - Distributed content (access over network)



Working with an enormous amount of data

- 10 billion pages a 500kB estimated in 01-2004
 - 2 pages / person on the globe
- Surface web 20 times larger than the LoC print collection
 - estimated in 2003
- Furthermore there is a Deep Web
 - 550 billion pages estimated in 2004

Size of the indexed web

src. http://www.worldwidewebsize.com/, GYB = Sorted on Google, Yahoo! and Bing
YGB = Sorted on Yahoo!, Google and Bing

- Example for the amount of web pages:
 - Searching for 'Star Trek' (currently) yields on Google ~ 212 millions of results
 - Users investigate up to 20 result list entries.
- What web page is the most interesting?
 Cp. Concept of relevance (IR)
- How to index this amount of pages?
 Eg. in an inverted list

The Web is highly dynamic

- Study by Cho & Garcia-Molina (2002):
 - 40% of the web pages changed their dataset within a week
 - 23% of the .com pages changed on daily basis
- Study by Fetterly et al. (2003):
 - 35 % of the pages changed while the investigations
 - Larger web pages change more often

The Web is self-organized

- No central authority / main index
 For the WWW
- Everyone can add (or edit) pages — Cp. Personal homepages, blogs, wikis, ...
- Pages disappear on regular basis
 - US study claimed that in 2 investigated tech. journals 50% of the cited links were inaccessible after four years.
- Lots of errors and falsehood, no quality control

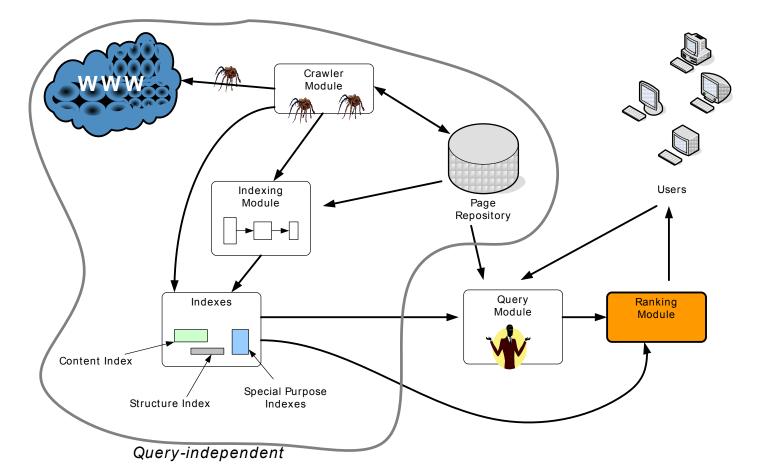
The Web is hyperlinked

- Based on HTML Markup tags and URIs
- Pages are interconnected
 - Unidirectional links
 - in-link, out-link and self-link
- Network structures emerge from the links
 - Interdepence / graph analysis possible

Introduction

Common Architecture

- Ranking
 - PageRank
 - HITS
- Application: Nutch



Content

Common Architecture

ITEC, Klagenfurt University, Austria - Multimedia Information Systems

Crawlers, robots & spiders harvest sites

- Starting with a **root set** of URLs
- Following links, that are found on the pages
- Applying **filters** to the links
 - e.g. only .at domains -> Austrian web pages
 - e.g. based on link title & position (cp. focused crawling)

Crawlers: Index Update

- Update index: What & When?
- A page content might have changed since last visit
 - last modified dates are eventually inaccurate
- Different strategies are possible:
 - Refresh only portions ...
 - Prefer most popular sites ...

- Consumption of bandwidth?
- Impact on statistics: hit counts, visits, ...
- Server load of crawled web server?
- Let loose several spiders at once
 - Decrease of crawling time
 - Increase load

Crawling: Robots.txt

- Robots.txt is option for webmasters to
 - restrict crawler access
 - point crawlers to interesting URLs
 - identify crawlers (with hit on the robots.txt)
 - see http://www.robotstxt.org/wc/robots.html
- Example

```
User-agent: *
Disallow: /wp-admin/
Disallow: /netadmin/
```


Crawler: Google sitemaps

- XML schema to identify interesting portions & updates of a web page
- Integration into CMS

• Example:

```
<url>
   <loc>http://www.semanticmetadata.net/</loc>
   <lastmod>2007-02-06T11:26:06+00:00</lastmod>
   <changefreq>daily</changefreq>
   <priority>1</priority>
</url>
```


Google Sitemaps

<urlset>

- Collection of URIs, main tag

<url>

Parent tag of a web page definition

<loc>

- URI of the web page,
- < 2048 chars</p>

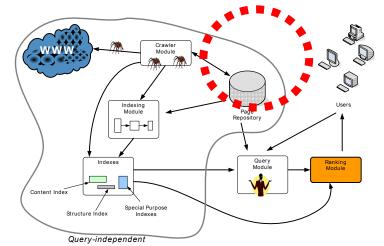
<lastmod>

- last modification in W3C date format
- time portion optional

Google Sitemaps

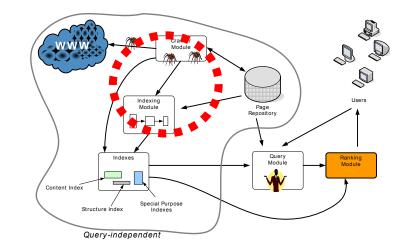
<changefreq>

- How frequently the page is likely to change
- always, hourly, daily, weekly, monthly, yearly, never

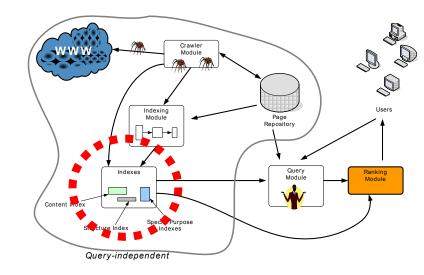

<priority>

- out of [0,1]
- default is 0.5

Page Repository


- Twofold benefits
 - Temporary storage for indexing process
 - Cache for pages
 - summarization of search results
 - snapshot
- After indexing
 - Information is compressed
 - e.g. Stripping tags

Indexing Module


- Takes each new uncompressed page
- Extracts vital descriptors
 - terms, positions, links
- Creates compressed version of page
- Stores
 - Page in cache
 - Descriptors in index

Indexes

- Content Index
- Structure Index
- Special Purpose Index
 - Document Formats (PDF, Doc, ...)
 - Media (Images, Video, ...)
 - Usage (Hits, bookmarks, ...)

Content Index

- Inverted Index
 - -term x -> <d11>, <d28>, <d31>, ...
 - -term y -> <d10>, <d35>, <d36>, ...

Index is a

- quick lookup table
- smaller than documents

Content Index

Characteristics of Web Retrieval

- Huge amount of different terms
 - Multiple languages
 - No stemming
- Huge amount of pages / term
 e.g. for broad terms (*weather, sports*)
- Needs to be compressed & distributed

Structure Index

- Hyperlink Information

 In-links, out-links & self-links
- Stored for ...
 - Later analysis
 - Later queries (who links to whom)

Query Module

- Creates query
 - From user input (natural language)
- Distributes query to indexes

 Multiple indexes on multiple machines
- Create result set
 - Set of relevant pages

Ranking Module

- Orders set of relevant pages

 Input from query module
- Employs ranking algorithm
 - Based on several aspects (terms, links, etc.)
 - Overall score is combination of
 - Content score (TF*IDF)
 - Popularity score (PageRank, HITS, etc.)

Content

- Introduction
- Common Architecture
- Ranking
 - PageRank
 - HITS
- Application: Nutch

ITEC, Klagenfurt University, Austria - Multimedia Information Systems

Ranking by Popularity

- Problem with amount of data
 Queries on popular terms yield many results
- Idea for selecting the most relevant ...
 - Combine content with **popularity** of page
 - More popular pages are "authorities"
- How to define popularity?

Only hypertext documents are given ...

Popularity Ranking

- 2 Algorithms developed independently
 - PageRank, Brin & Page
 - Hypertext Induced Topic Search (HITS), Kleinberg
- Basic idea of popularity
 - Someone likes a page
 - Gives a recommendation (on another page)
 - Using a hyperlink

Popularity Ranking: Basic Idea

• There are different types of people:

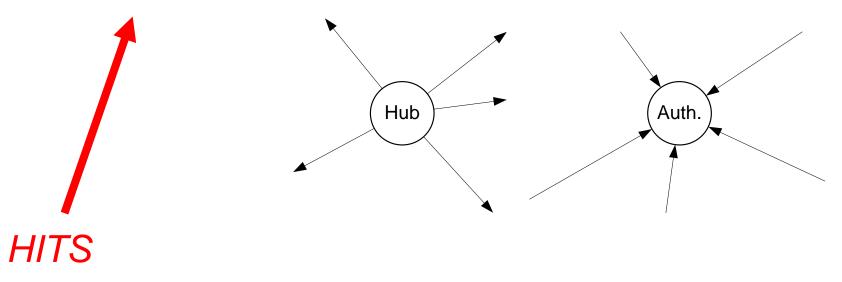
- Regarding their idea of recommendation
 - People giving a lot of recommendations (links)
 - People giving few recommendations (links)
- Regarding their state of recommendation
 - Recommended by a lot of people
 - Recommended by few people
- Combinations are possible:
 - Having no recommendation, but recommending a lot, ...

Popularity Ranking: Basic Idea

Think of

- people as pages
- recommendations as links

Therefore:


"Pages are popular, if popular pages link them"

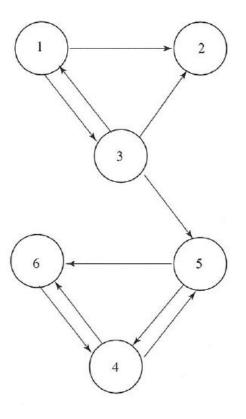
Popularity Ranking: Basic Idea

- Additional assumptions:
 - Hubs are pages that refer a lot
 - Authorities are pages, which are referred a lot

PageRank: Original Summation Formula

- Original summation formula
 - PageRank of page P_i is given by the summation of all pages that link to P_i given by Set B_{P_i}

$$r(P_i) = \sum_{P_j \in B_{P_i}} \frac{r(P_j)}{|P_j|},$$


• Iterative formula, starting with rank 1/n for all n pages: $r_{k+1}(P_i) = \sum_{P_j \in B_{P_i}} \frac{r_k(P_j)}{|P_j|}$

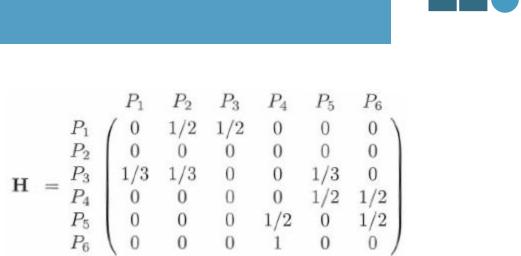
PageRank: Original Summation Formula

$$r_{k+1}(P_i) = \sum_{P_j \in B_{P_i}} \frac{r_k(P_j)}{|P_j|}$$

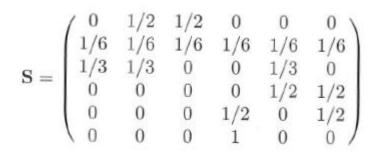
Iteration 0	Iteration 1	Iteration 2	Rank at Iter. 2
$r_0(P_1) = 1/6$	$r_1(P_1) = 1/18$	$r_2(P_1) = 1/36$	5
$r_0(P_2) = 1/6$	$r_1(P_2) = 5/36$	$r_2(P_2) = 1/18$	4
$r_0(P_3) = 1/6$	$r_1(P_3) = 1/12$	$r_2(P_3) = 1/36$	5
$r_0(P_4) = 1/6$	$r_1(P_4) = 1/4$	$r_2(P_4) = 17/72$	1
$r_0(P_5) = 1/6$	$r_1(P_5) = 5/36$	$r_2(P_5) = 11/72$	3
$r_0(P_6) = 1/6$	$r_1(P_6) = 1/6$	$r_2(P_6) = 14/72$	2

Initial Problems

- Rank sinks & cycles:
 - Some pages get all of the score, other pages none
 - Cycles just flip the rank
- How many iterations?
 - Will the process converge?
 - Will it converge to one single vector?



Approach of Brin & Page


- Notion of the random surfer
 - Someone navigates through the web using hyperlinks.
 - If there are 6 links, there is a probability of 1/6 that s/he takes a specific link
 - On dangling nodes (without out links) s/he can jump everywhere with equal chance
 - Furthermore s/he can leave the link path with a given probability every time

Approach of Brin & Page: Dangling nodes

Dangling nodes

6

3

4

5

ITEC, Klagenfurt University, Austria - Multimedia Information Systems

Approach of Brin & Page:

Teleportation of the Random Surfer

• Introduction of the Google Matrix: $\mathbf{G} = \alpha \mathbf{S} + (1 - \alpha)1/n \mathbf{e} \mathbf{e}^T$

Transformation: $G = \alpha \cdot H + (\alpha \cdot a + (1 - \alpha)e)\frac{1}{n}e^{T}$ a ... dangling nodes vector

$$\begin{split} \mathbf{G} &= .9\mathbf{H} + (.9 \begin{pmatrix} 0\\1\\0\\0\\0\\0 \end{pmatrix} + .1 \begin{pmatrix} 1\\1\\1\\1\\1 \end{pmatrix}) 1/6 \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix} \\ &= \begin{pmatrix} 1/60 & 7/15 & 7/15 & 1/60 & 1/60 & 1/60\\1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6\\19/60 & 19/60 & 1/60 & 1/60 & 19/60 & 1/60\\1/60 & 1/60 & 1/60 & 1/60 & 7/15 & 7/15\\1/60 & 1/60 & 1/60 & 11/12 & 1/60 & 1/60 \end{pmatrix}. \end{split}$$

Approach of Brin & Page: Result of the adaptations

5

$$\boldsymbol{\pi}^{(k+1)T} = \boldsymbol{\pi}^{(k)T}\mathbf{G},$$

- Iterative Formula
 - Converges to a single PageRank vector
- In our example:

$$\pi^{T} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 0.03721 & 0.05396 & 0.04151 & .3751 & .206 & .2862 \end{pmatrix}$$

taken from "Google's PageRank & Beyond", Langville & Meyer

Features of PageRank

- Mathematical model
 - Created later on, based on Markov chains
- Can be handled in a distributed way
 - "Worlds biggest matrix multiplication"

HITS

- Every page *i* has a authority score *x_i* and a hub score *y_i*
- Successive refinement of scores:

$$x_i^{(k)} = \sum_{j:e_{ji} \in E} y_j^{(k-1)}$$
 and $y_i^{(k)} = \sum_{j:e_{ji} \in E} x_j^{(k)}$ for $k = 1, 2, 3, ...$

- Business for "optimizing" rank in search listings (SEO)
- There are two ways:
 - Ethical: Good content and communication leads to extensive linking and a high content score as well as popularity
 - Unethical: Try to get a lot of links to the site of the customer or lay a *Google Bomb*.

Introduction

- Common Architecture
- Ranking
 - PageRank
 - HITS
- Application: Nutch

Content

Nutch

- Open Source Web Search Engine
- Currently in version 1.5
- Includes
 - Crawler (simple to expert)
 - Document parsers (doc, pdf, ...)
 - Integration with Apache Lucene Solr
 - Distribution framework (Hadoop)

What can Nutch do?

Crawling

- Configurable threads
- Distributed approach
- Control on various levels (inject, fetch, index)

Searching

- Web based as well as Java Bean
- Distributed indexes
- Ranking similar to PageRank

Simple Use Example

- Download and unzip Nutch
 - ~ 83 MB
- Intranet Crawl:
 - Set up root URLs
 - e.g. http://www.uni-klu.ac.at/main/index.htm
 - Set up URL filters
 - e.g. +^http://([a-z0-9]*₩.)*uni-klu.ac.at/
 - Set up configuration
 - Add user agent string (mandatory)
 - Run crawler:
 - bin/nutch crawl urls -dir crawl.test -depth 3 >& crawl.log

Simple Use Example

Search using Apache Tomcat

😻 Nutch: search results - Mozilla Firefox												- 🗆	×
<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	Hi <u>s</u> tory	<u>B</u> ookmarks	<u>T</u> ools	<u>H</u> elp	[LEO	🌲 BEO	LINGUS 📐	Gmail		»	$\langle \rangle$
About FA													
Hits 1-8 (out of about 87 total matching pages):													
Alpen Adria Universität Klagenfurt - The University whose minds know no frontiers. University Profile Key data History of mehr alle Termine Alps-Adriatic University of Klagenfurt Publication http://www.uni-klu.ac.at/main/inhalt_english/236.htm (cached) (explain) (anchors) (more from www.uni-klu.ac.at)													
Alpen Adria Universität Klagenfurt - Klagenfurt University Alpen-Adria-Universität Klagenfurt Klagenfurt University Klagenfurt University is situated in the in ecology. Alps-Adriatic University http://www.uni-klu.ac.at/main/inhalt_english/633.htm (cached) (explain) (anchors) (more from www.uni-klu.ac.at)													
Done									0.125 0.125 0.125	- (3)	Adblo	nck	
Done									0.125		- autore		11.

ITEC, Klagenfurt University, Austria - Multimedia Information Systems

Costs for Web Crawling

- How much does it cost to run a search engine?
 - Monthly amount of pages to crawl: 4 billion
 - 4.000.000.000 pages @ 200K = 80.000 GB per month.
- One connection:
 - 100mbs connection
 - / 8 megabits per MB
 - * 60 seconds in a minute
 - * 60 minutes in an hour
 - * 24 hours in a day
 - * 30 days in a month=32.400 GB / month

Costs for Web Crawling

- Therefore at least 3 100 MBit connections are needed
 - Running at full capacity 24/7
 - Only with a simple calculation (w/o overhead)
- Also at least 3 servers are needed
- And a lot of storage
 - ~ 80.000 GB with caching

taken from http://www.mail-archive.com/nutch-user@lucene.apache.org/msg05577.html

