

VK Multimedia Information Systems

Mathias Lux, mlux@itec.uni-klu.ac.at Dienstags, 16.oo Uhr c.t., E.1.42

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0

- Local features
- Bag of visual words
- Clustering

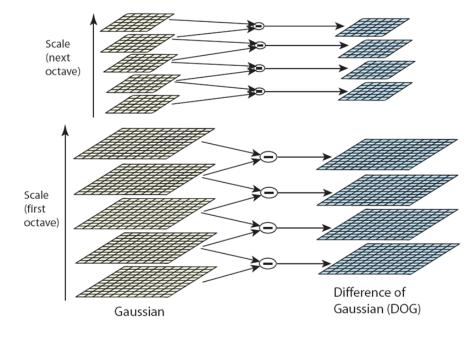
Local Features

- Capture points of interest
 - Example: SIFT, SURF, ...
 - Instead of global description
- Cp. Ferrari driving video
 - House moves over different frames

ITEC, Klagenfurt University, Austria - Multimedia Information Systems

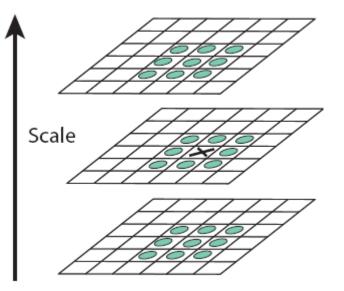
Scale space extrema detection

- Interest point identification
 - Difference of Gaussians
 - Use Gaussian blurred images at different octaves (resolutions)
 - Compute differences of adjacent blurred images pixel wise



Scale space extrema detection

- Compare each pixel
 - 8 direct neighbours
 - 2x9 neighbours in different scales
- Find minima and maxima
- Which are considered candidate interest points



- Scale space extrema detection produces too many candidate interest points
- I.e. SIFT reduces by
 - discarding low-contrast keypoints
 - eliminating edge responses

src. Wikipedia http://en.wikipedia.org/wiki/File:Sift_keypoints_filtering.jpg

ITEC, Klagenfurt University, Austria - Multimedia Information Systems

- Orientation assignment
 - based on local image gradient directions
 - achieves invariance against rotation

Extraction

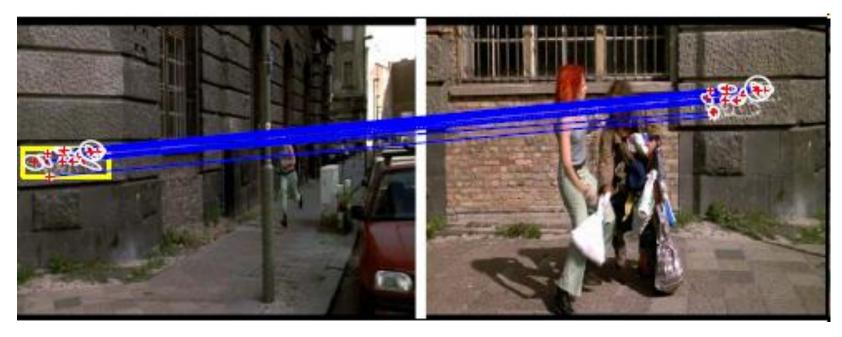
- gradient magnitude at every scale
- for all neighbouring pixels
- gradient histogram with 36 bins
- peaks are interpreted as main directions

Keypoint Descriptor

- Extracted from
 - scale of the keypoint
 - a 16x16 pixel neighborhood
 - gradient and orientation histograms
- Descriptor has 128 dimensions

Local Feature Matching

• Descriptors matching with L1, L2



Src. Sivic & Zisserman: Video Google: A Text Retrieval Approach to Object Matching in Videos, ICCV 2003, IEEE

ITEC, Klagenfurt University, Austria - Multimedia Information Systems

Image Stitching

- creating panoramas from multiple images.

- 3D scene reconstruction
 - cp. Microsoft Photosynth
 - see http://photosynth.net/

Local Features

- Scale Invariant Feature Transform: SIFT
 - Lowe, David G. (1999). "Object recognition from local scale-invariant features". Proceedings of the ICCV 1999, pp. 1150–1157
- Speeded Up Robust Features: SURF
 - Herbert Bay, Andreas Ess, Tinne Tuytelaars, Luc Van Gool, "SURF: Speeded Up Robust Features", Computer Vision and Image Understanding (CVIU), Vol. 110, No. 3, pp. 346--359, 2008
- Performance
 - Mikolajczyk, K.; Schmid, C. (2005). "A performance evaluation of local descriptors". IEEE Transactions on Pattern Analysis and Machine Intelligence 27 (10): 1615–1630
- In detail lecture book
 - Kristen Grauman and Bastian Leibe: Visual Object Recognition, Morgan Claypool, Synthesis, 2011

Local Features

- Process can be adapted to specific needs
 - interest point / blob detection
 - Laplacian of Gaussian (LoG)
 - Difference of Gaussians (DoG)
 - Maximally stable extremal regions (MSER)
 - etc.
 - feature point description
 - SIFT, SURF, GLOH, HOG, LESH, ...

Local Features in Java

- Java SIFT (ImageJ Plugin)
 - http://fly.mpi-cbg.de/~saalfeld/Projects/javasift.html
- jopensurf
 - http://code.google.com/p/jopensurf/
- MSER
 - Lire, net.semanticmetadata.lire.imageanalysis.mser.MSER
- OpenIMAJ
 - extensive library: http://www.openimaj.org/

Local Features in Applications

- OpenCV
 - platform independent
 - based on C
 - build with cmake

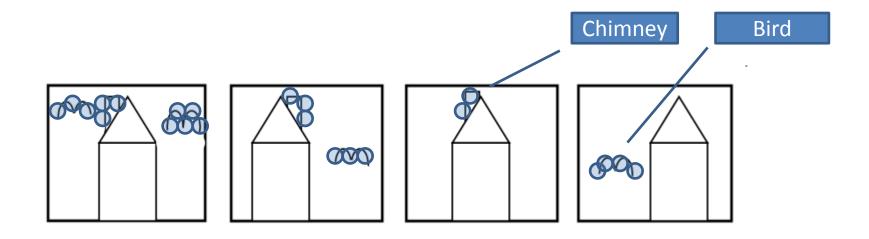
http://opencv.willowgarage.com/wiki/

Bag of Visual Words

- Local features are computationally expensive
 - many features per frame / image
 - pair wise distance computation leads to a huge number of distance function calls
 - e.g. *n* features vs. *m* features -> *m*n* distance function calls.

Bag of Visual Words

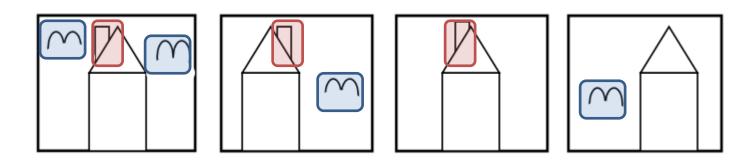
- Group similar local features
- Assign identifier to such a group



Bag of Visual Words

Tag images containing features of group

 – {bird, bird, chimney}, {bird, chimney}, {chimney},
 {bird}



ITEC, Klagenfurt University, Austria - Multimedia Information Systems

Bag of visual words

- Groups are created unsupervised
 - not named, no semantic entities
 - model created is called <u>visual vocabulary</u> or <u>codebook</u>
- Group labels are called <u>visual words</u>

just a number, not a concept

BoVW Pipeline Overview

Assignment of Visual Words

Local Feature Extraction

- Extract SIFT / SURF features
 - $-k_i >> 1$ features for image I_i
 - the bigger the image the more features

Visual Vocabulary Generation

- Select representative sample
- Cluster the union set of features
 - to a pre-selected number of clusters

- Example: 1M images
 - Select 50,000 randomly
 - Cluster features of the 50k images

Assignment of Visual Words

- For each image I in the corpus
 - For each feature of I
 - Find the best matching cluster (center)
 - Assign visual word to the image

Best practice

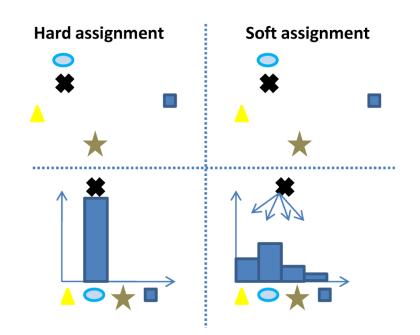
- Representative sample of documents
 - random sampling
 - up to a manageable number of features
- Vocabulary generation
 - parallel or distributed implementation
 - re-generate when necessary
- Assignment based on medians / medoids

 employ good index structure (e.g. hashing)

Example: SURF

- Simplicity data set
 - 1000 images, 10 categories, 100 images each
- SURF features (jopensurf)
 - 98 ms / image for extraction
- Vocabulary creation
 - 400 images,
 - with ~ 92.000 features (depends on sampling)
 - 10.000 clusters, ~ 2 minutes processing time

- fuzzy instead of binary assignments
 - one feature can express multiple visual words
 - based on a fuzzy
 membership function
 - also called "soft assignments"



Alternative Clustering Approach

- Fuzzy C-Means
 - add a feature to more than one cluster
 - adds robustness in terms of vocabulary size

Weighting

- TF works
- IDF not so well
- Distribution?

