

VK Multimedia Information Systems

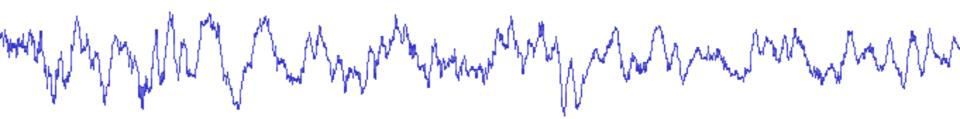
Mathias Lux, mlux@itec.uni-klu.ac.at

Dienstags, 16.00 Uhr c.t., E.1.42

Audio & Music Retrieval

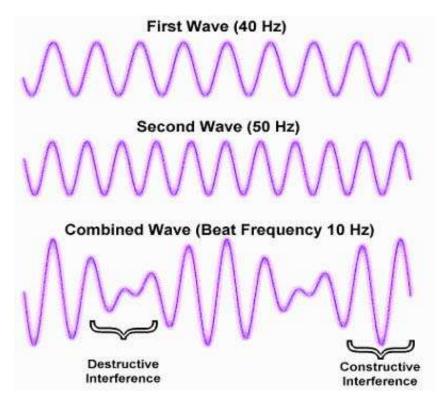
- What is Digital Audio?
- Features & Descriptors
- Speech
 - Speech Recognition
 - Speaker Detection
- Event Detection
- Music Retrieval
 - Motivation & Problems
 - Algorithms & Methods

What is Digital Audio



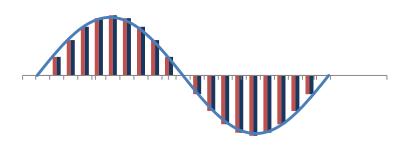
- Analogue signal goes digital
- Digitization: PCM
- Formats:
 - Compression
 - Containers

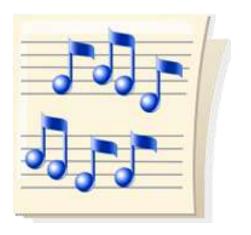
What is sound?



What is sound?

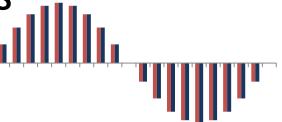
Multiple sounds at the same time?





What is digital sound?

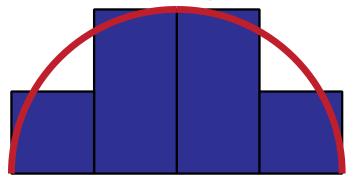
- A digitization of the wave.
 - Either a recipe for reconstruction
 - Or a discrete approximation

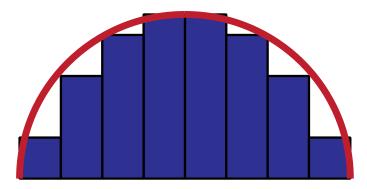


Sampled sound

- Wave gets sampled x times a second
 - E.g. 48.000 times -> 48 kHz sampling rate
- Obtained values are stored
 - E.g. 256, 240, 13, -7, -12, -44,
 - Quantization to e.g. 2^8 levels -> 8 Bit
- Possibly from different sensors
 - Stereo -> 2 channels

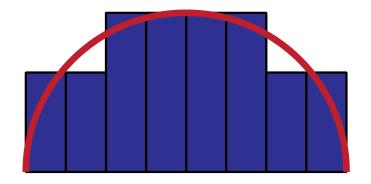
Sampled sound

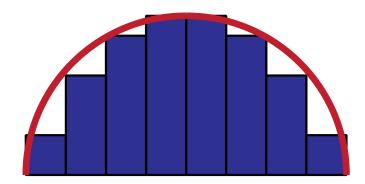

- Example: 8 kHz, 16 bit Stereo
 - Sound wave is sampled 8.000 times a second
 - Samples are stored in 16 bit numbers
- That's Pulse Code Modulation (PCM)
 - Often used in WAV files ...
 - Also as input from microphone or line in



Sampling Rates

- With sampling rate x we can approximate frequencies up to x/2
- Assume frequency 1
 - sampling rate of 1 -> "0"
 - sampling rate of 2 -> "1,-1"





Quantization

- Reduces the possible values of the samples to a certain value
 - − 8 Bit -> 256 levels, etc.

What do we want to capture?

- Humans can hear
 - From around 16 21 Hz
 - To around 16 kHz 19kHz
 - 16 bit is enough (CD), 32 bit even better

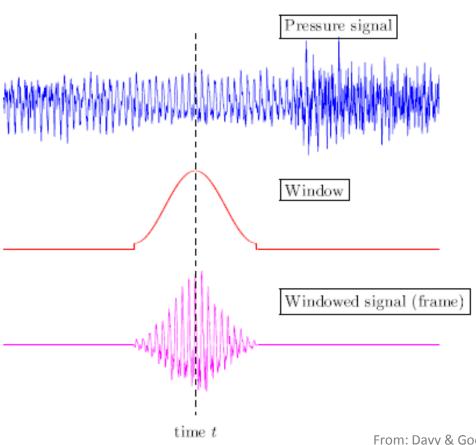
Sound Formats

- Waveform Audio Format
 - Container for several compression formats
 - Includes PCM, MP3, GSM, μ -Law
- Musical Instrument Digital Interface
 - Control codes for instruments
 - Instruments can be "emulated"
- Compressed Audio Formats
 - MP3, OGG, AAC, ...

Audio & Music Retrieval

- What is Digital Audio?
- Features & Descriptors
- Speech
 - Speech Recognition
 - Speaker Detection
- Event Detection
- Music Retrieval
 - Motivation & Problems
 - Algorithms & Methods

Audio Low-Level Features



- Lots of different applications
 - Speech Recognition
 - One of the first applications
 - Music Information Retrieval
 - Environmental Sound Recognition
- Different specific Features / Descriptors
- Standardization Efforts
 - MPEG-7, low-level audio descriptors

Audio Frames

Audio Low-Level Features

- Features describe audio frames
- Frame definition critical to outcome
 - Shape (rectangular, Hamming, etc.)
 - Size (e.g. 150 ms)
- Features capture aspects
 - Energy (loudness)
 - Frequencies
 - Change over time (attack time, etc.)

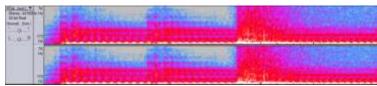
Audio Low-Level Features

- MPEG-7 collects assortment of usable features
 - Basic
 - Basic Spectral
 - Spectral Basis
 - Signal Parameters
 - Timbral Temporal
 - Timbral Spectral

Basic Features

Short description of audio waveform

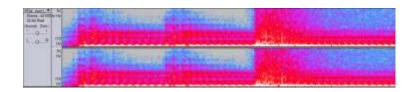
- AudioWaveform
 - Mainly for display
 - Minimum and maximum of the envelope
- AudioPower
 - Average square of the waveform samples
 - Power of the signal over time



Basic Spectral

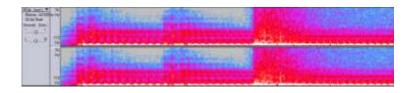
Basic properties of the spectrum of a signal

- AudioSpectrumEnvelope
 - short-term power spectrum of a signal
 - logarithmic frequency scale
 - imitating the human ear
- AudioSpectrumCentroid
 - Center of gravity in above descriptor
 - Indicates whether high/low freq. dominate



Basic Spectral

- AudioSpectrumSpread
 - deviation of the power spectrum from centroid
 - separation of tonal from noise-like sounds
- AudioSpectrumFlatness
 - deviation of the spectrum from a flat shape
 - designed to perform fingerprinting



Spectral Basis

- ... general-purpose sound recognition
- AudioSpectrumBasis
 - Transforms spectrum to a lower-dimensional representation
 - Based on power spectrum
- AudioSpectrumProjection
 - Also transformation / reduction of data
 - Based on orig. signal & above descriptor

Signal Parameters

AudioFundamentalFrequency

- Fundamental frequency of a sound
- Applicable to sound segmentation of speech and music

AudioHarmonicity

- Measure for the degree of harmonicity
- Allows distinction between
 - sounds with a harmonic spectrum (e.g., musical tones or voiced speech [e.g., vowels]),
 - sounds with an inharmonic spectrum (e.g., metallic or bell-like sounds)
 and
 - sounds with a non-harmonic spectrum (e.g., noise, unvoiced speech, or dense mixtures of instruments)

Timbral Temporal

- Usually employed in music retrieval, independent of pitch and loudness
- LogAttackTime
 - logarithm of attack time of a sound
 - attack time is the time from the beginning of a sound signal to a point in time where its amplitude reaches a maximum
- TemporalCentroid
 - Time point of highest signal energy

Timbral Spectral

Descriptors rely on harmonic peak estimation

- Harmonic peaks
 - Correspond to frequencies that are a multiple of the fundamental frequency
 - Are used to describe the timbre of a signal

Timbral Spectral

- HarmonicSpectralCentroid
 - Amplitude-weighted average of harmonic peaks in spectrum
- HarmonicSpectralSpread
 - Amplitude-weighted deviation of harmonic peaks from above feature

Timbral Spectral

- HarmonicSpectralDeviation
 - Deviation of harmonic peaks from spectral envelope
- HarmonicSpectralVariation
 - Correlation of harmonic peaks in adjacent frames
- SpectralCentroid
 - Power-weighted average of frequencies in the power spectrum

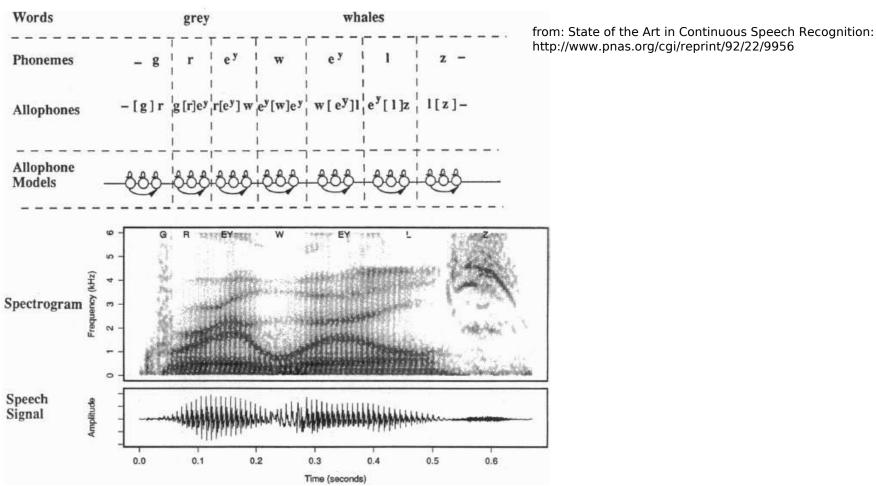
Audio & Music Retrieval

- Features & Descriptors
- Speech
 - Speech Recognition
 - Speaker Detection
- Event Detection
- Music Retrieval
 - Motivation & Problems
 - Algorithms & Methods

Speech Recognition: The Problem

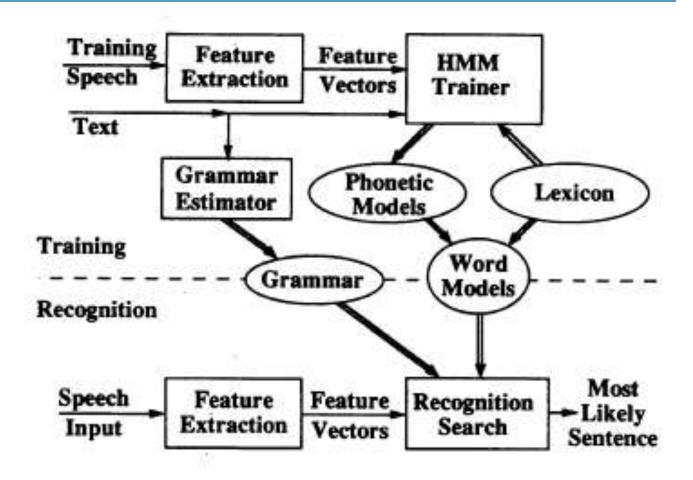
- Conversion of acoustic signal into words
- Different possible approaches
 - Isolated-word speech recognition
 - Continuous speech recognition
- Dependence on speaker
 - Training samples or independent

Speech Recognition: The Problem



- Spontaneous vs. speech read from script
 - Spontaneous has disfluencies, more challenging task
- Language model is used for word sequences
 - Restriction to combination of words
- Measure for difficulty of the task: Perplexity
 - geometric mean of the number of words that can follow a word after the language model has been applied

Words & Phonemes



Speech Recognition: Process

Speech Recognition: Process

Feature Extraction

- Recognition from signal (near real time)
- Amount of data (matching & indexing)

Training

- Modeling characteristics of speakers
- Pronounciation -> Phonetic HMM
- Grammar -> Markov Model (bi- or tri-word)

Recognition

- Search among possible word sequences
- Highest possibility as match

Speaker Recognition

Detect speaker (change) in continuous speech

- Proper features to describe speaker
 - based on group of possible speakers
- Proper classification algorithm
- Robust against natural influence
 - Noise, cold, emotions, etc.

Speaker Recognition: Applications

- Video Analysis
 - Segmentation of interviews, etc.
- Media Analysis
 - How long did the J. Doe speak in TV this month?
- Security
 - Access restrictions: "Computer, shut down the warp drive!"

Audio & Music Retrieval

- Features & Descriptors
- Speech
 - Speech Recognition
 - Speaker Detection
- Event-Detection
- Music Retrieval
 - Motivation & Problems
 - Algorithms & Methods

Event Detection

- Several domains have simple characteristics:
 - Sports events follow rules, participants behave similar
 - News broadcasts have a simple scheme, news anchormen introduce and summarize stories
 - Surveillance applied in 'dull' scenarios to detect 'extreme situations' like fire, panic, etc.
 - Ad blocks in TV have rough and fast scene cuts and raised volume

Event Detection

- Events are 'peaks' in one or several dimensions
 - Appropriate dimensions have to be found
 - Possibility of event has to be calculated
- Several domain rules might apply
 - Scoring in soccer after final whistle not possible
 - Foul and applause unlikely to occur immediately after another
 - Certain temporal distance between ad blocks

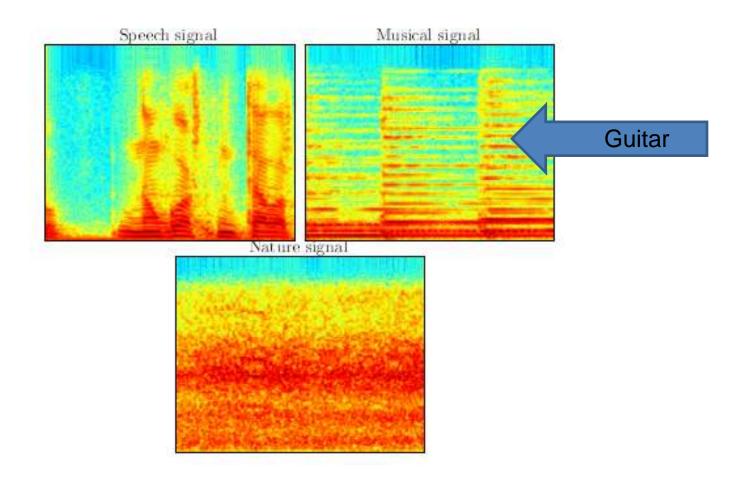
Event Detection: Example Soccer

- Event of Scoring:
 - Applause following a goal
 - Raised volume in commentators voice
 - Whistle of the referee
- Event of Foul:
 - Cheers of 'boo'
 - Whistle of the referee
- Event of Start / End of game
 - First and last whistle of the referee
 - Certain minimum amount of time in between

Audio & Music Retrieval

- Features & Descriptors
- Speech
 - Speech Recognition
 - Speaker Detection
- Event Detection
- Music Retrieval

MIR: Background



Sounds produced by musical instruments are ...

- almost periodic vibrations
- a combination of different frequencies
- all multiple integers of a fundamental frequency (called F0)

MIR: Three basic features

Pitch

- based on the fundamental frequency
- low/deep to high/acute

Intensity

- the intensity of the amplitude
- the energy of the vibration

Timbre

 sound characteristics that allow listeners to perceive as different two sounds with same pitch and same intensity

The User

- Three different intentions
 - Listen to particular performance / musical work
 - Building a collection of music
 - Verifying or identifying works
- Information need of users
 - Formalization of need often not easy
 - Unexperienced vs. professional user
 - Query-by-example easier
 - Possible task: Automatic playlist generation

Music Processing: Melody

- Melody is key feature
 - Many genres have single relevant melody line
 - Discrimination even without rhythm
 - Eventually easy to extract (e.g. Midi)
 - Main feature for query-by-humming
- Retrieved & indexed using n-grams
 - Short sequences of same length
 - Segmentation remains issue

Music Processing: Melody

- Extraction
 - Pitch Tracking
 - F0-Estimation
- Limitations
 - Single note vibrato

Music Processing: Harmony

- Chord sequences are considered as relevant descriptors
- Extraction is challenging task
 - Transcription even for user hard

Music Processing: Timbre

- Most difficult feature to characterize
 - defined as acoustic feature that is neither pitch nor intensity
 - Mainly related to the spectrum
- Timbre parameters are left to choice of performers
 - At least in Western classical music
 - Not formalized through transcription
- Listeners are very sensitive to change in timbre

Music Processing: Orchestration

- How the particular work is orchestrated
- Described through musical instruments
 - Style of play is more a matter of timbre
- Recognition of musical instruments
 - Main way of extraction
 - Used rarely in MIR
 - Recognition rates rather high
 - 100% for easily recognizable instruments (like flute)
 - 75% for harder tasks (like chello)
 - 80% on average on large instrument databases

Music Processing: Rhythm

- Intuitively easily recognizable
 - Assumption comes from Western music
 - Africa & Eastern Europe -> highly complex task
- Pop and Rock music simple examples
 - Rhythm is based on variations
 - Four equally spaced beats
 - 1st and 3rd are stronger
- Tempo Tracking
 - relevant for dance / mix / radio

Music Information Retrieval: Examples

Pandora ... www.pandora.com

- Pandora is a personalized internet radio
 - Selection of 'songs one likes'
 - Stream composed on music retrieval
- Audio Genes (fingerprinting)
 - Retrieve music with similar content
- Recommenders and Classifications
 - Based on several characteristics like heavy guitars, impressive voice, etc.

Music Information Retrieval: Musipedia.org

- Portal for searching music
- Several different search options
 - Keyboard search
 - Contour search
 - Query by humming
 - Rhythm search
- Example: Contour search
 - U ... Up, D ... Down, R ... Repeat
 - DDUUUDRDR Austrian National Anthem
 - UUDUDDDUUDDDUDU Haydn, Emporer's Hymn

Thank you ...

... for your attention

