

VK Multimedia Information Systems

Mathias Lux, mlux@itec.uni-klu.ac.at

Dienstags, 16.00 Uhr c.t., E.1.42

Indexing

- Spatial Indexes
- MDS FastMap
- Locality Sensitive Hashing
- Metric Indexes
- Inverted Lists

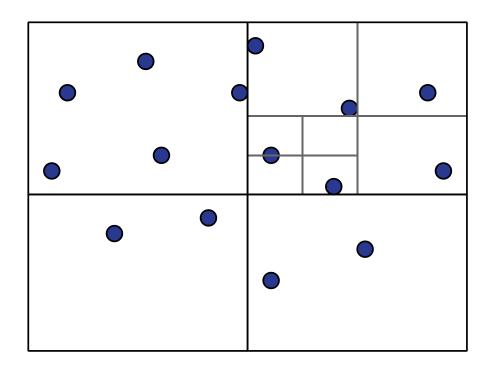
Indexing Visual Information

- Text is indexed in inverted lists
 - Search time depends on # of terms
- Visual information expressed by "vectors"
 - Combined with a metric capturing the semantics of similarity
 - Inverted list does not work here
 - An "index of vectors" is needed

Indexing Visual Information

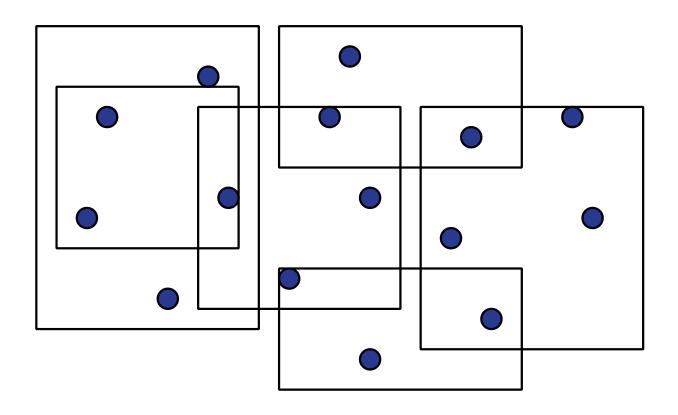
- Vectors describe "points in a space"
 - Space is n-dimensional
 - n might be rather big
- Distance (metric) between points
 - E.g. L1 or L2 ...
- Query is also a vector := point
 - Searching for points (vectors) near to query
- Idea for index:
 - Index neighborhood ...

Spatial Indexes



Using equally sized rectangles (Optimal for L1 ...)

Spatial Indexes



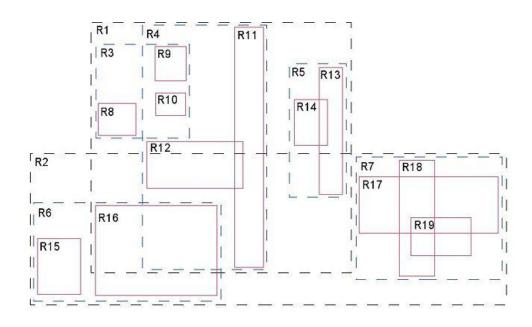
Using overlapping rectangles ...

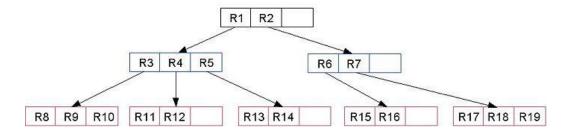
Spatial Indexes

Common data structures

- R Tree
 - R*, R+,
 - Overlapping rectangles
 - Search is a rectangle
- Quadtree (Octtree)
 - Equally sized regions, subdivided
 - 4 quadrants or 8 octants
 - Search selects quadrants

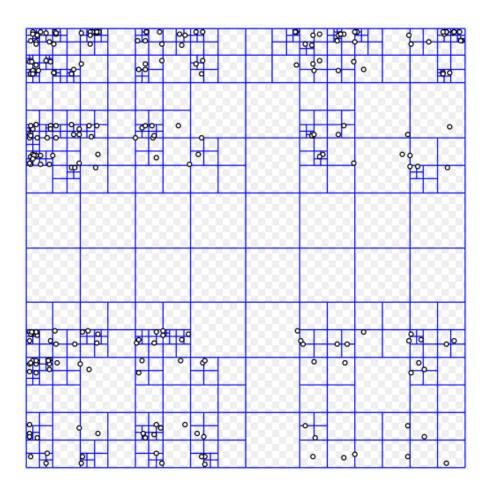
R-Tree





ITEC, Klagenfurt University, Austria - Multimedia Information Systems

Quadtree



Spatial Indexes: Drawbacks

- Data structures must minimize
 - false negatives (-> maximizes recall)
 - false positives (-> search time)
- Features, distance function & parameters need to be selected at index time
 - Search combining multiple descriptors is complicated issue
- Works best for spaces with small dimension n
 - MDS has to be applied ...

Indexing

- Spatial Indexes
- MDS FastMap
- Locality Sensitive Hashing
- Metric Indexes
- Inverted Lists

Multidimensional Scaling (MDS)

- Reducing the dimensions of a feature space
 - E.g. From 64 dimensions to 8
 - Without loosing too much information about neighborhoods
- Applications in multimedia retrieval
 - Indexing based on coordinates
 - Spatial Indexes:
 - Data structures to find nearest neighbors fast

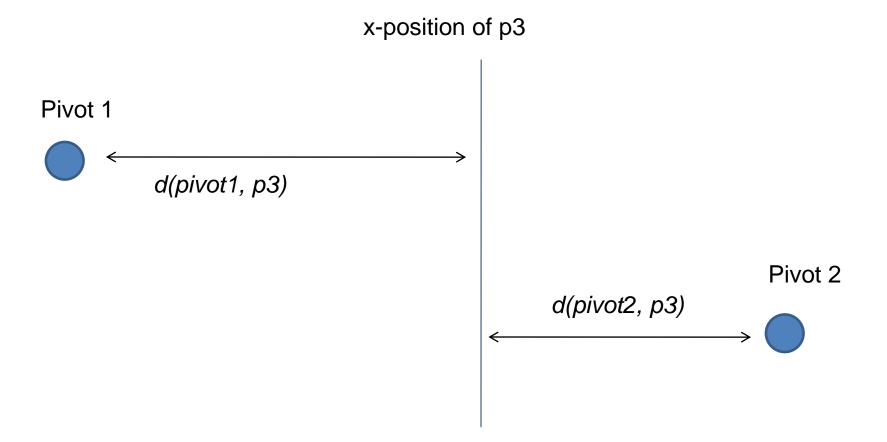
Multidimensional Scaling (MDS)

- Interpolation: FastMap
 - Linear in terms of objects
 - Used e.g. in IBM QBIC
- Iterative: Force Directed Placement
 - Iterative optimization of initial placement
 - Cubic runtime

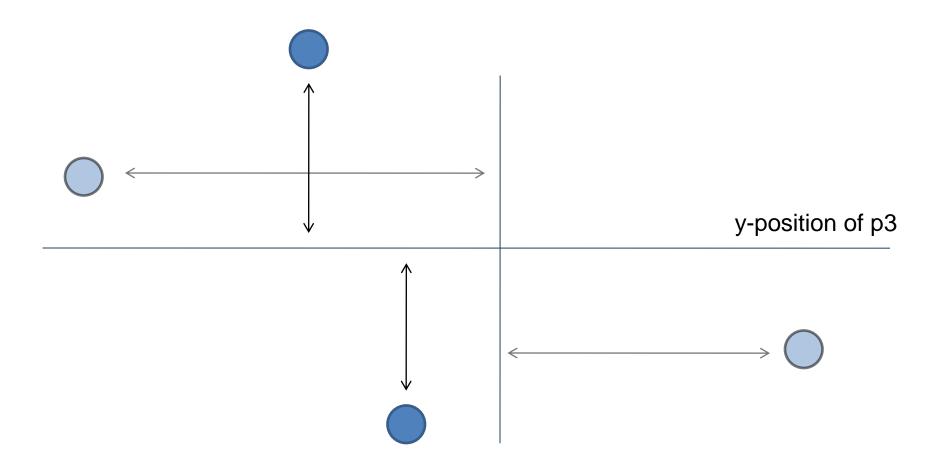
FastMap

- For Each dimension d
 - Find Pivots (the most distant objects)
 - For each object, which is not a pivot
 - Interpolate position between pivots in this dimension
 - Next object
- Next Pivot

FastMap



FastMap



FastMap: Pivots

How to find optimal pivots?

- Select one object randomly -> P₁
- Select Object P₂ with maximum distance from P₁ to P₂
- If $d(P_1, P_2) < t$
 - Set $P_1 = P_2$
 - Goto (2)

Normally no threshold is used but this is done x times.

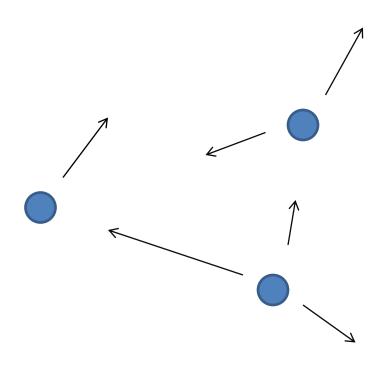
Force Directed Placement

- 1. All objects are assigned coordinates
- 2. For each object o
 - Movement vector v = 0
 - For each object p
 - Calculate repulsion & attraction forces between o & p
 - Compute movement vector v(o, p) depending on the forces
 - v = v + v(o, p)
- 3. If overall movement is still high goto 2.

FDP: Parameters

- Gravity as overall attraction
 - Prevents uncontrolled spread
- Overall repulsion
 - Prevents coming objects from coming too close
- Minimum distance
 - If objects are on the coordinates
- Spring parameters
 - Repulsion stronger close up
 - Attraction stronger if far away

FDP



Demo

• Emir

Indexing

- Spatial Indexes
- MDS FastMap
- Locality Sensitive Hashing
- Metric Indexes
- Inverted Lists

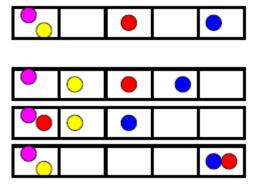
Locality Sensitive Hashing (LSH)

- Algorithm to determine the "Approximate Near(est) Neighbor"
- Given: a set P of points in R^d
- Nearest Neighbor: query q returns point p∈P minimizing |p-q|
- r-Near Neighbor: query q returns point $p \in P$ so that $|p-q| \le r$

src. http://people.csail.mit.edu/indyk/mmds.pdf

LSH - Idea

- Construct hash functions g:R^d→U so that
 - If $|p-q| \le r$ then Pr[g(p)=g(q)] is "not so small"
 - If |p-q|>cr then Pr[g(p)=g(q)] is "small"



LSH - Process

- A family H of hash functions h: R^d→U is called (P1, P2, r, cr)-sensitive if
 - If $|p-q| \le r$ then Pr[h(p)=h(q)] > P1
 - If |p-q| > cr then Pr[h(p)=h(q)] < P2
- LSH uses functions $g(p) = \langle h_1(p), ..., h_k(p) \rangle$
 - Preprocessing
 - Select functions g₁ ... g_L
 - Hash all $p \in P$ to buckets $g_1(p) \dots g_l(p)$
 - Query
 - Retrieve points from buckets $g_1(q) \dots g_L(q)$

LSH

LSH solves c-approximate NN with:

- Number of hash functions: $L=n^{\rho}$, $\rho=\log(1/P1)/\log(1/P2)$
- E.g., for the Hamming distance we have $\rho=1/c$
- Constant success probability per query q

LSH schemes

- Extending beyond Hamming distance
- Projection based, etc.

Indexing

- Spatial Indexes
- MDS FastMap
- Locality Sensitive Hashing
- Metric Indexes
- Inverted Lists

Metric Indexes

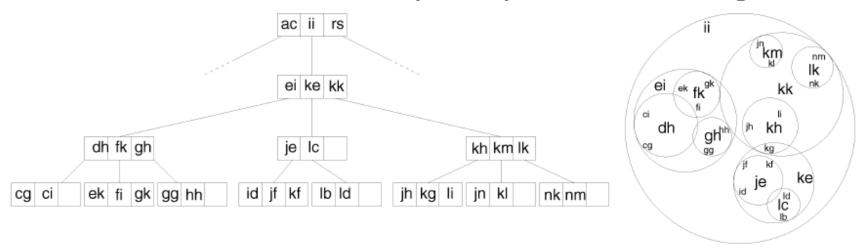
A metric index is a tree of nodes

- Each node containing a fixed maximum number of entries
- Each entry is constituted by a routing entry D

src. Berretti, S.; del Bimbo, A. & Vicario, E. Efficient Matching and Indexing of Graph Models in Content-Based Retrieval IEEE Transactions on Pattern Analysis and Machine Intelligence, **2001**, 23, 1089-1105

Metric Indexes

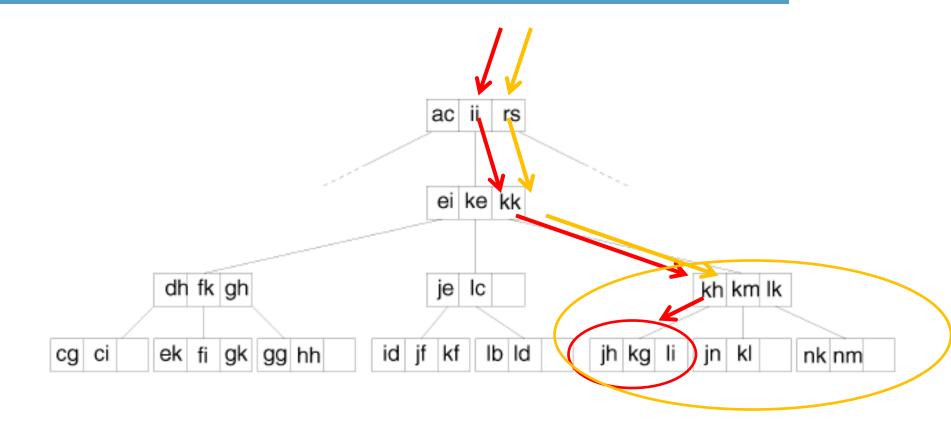
- D is the root of a sub index in the covering region of D
 - Also defines a radius r_D being the maximum distance from D to any entry in the covering



Metric Index: Construction

- Top-down: Indexing an entire archive at once
 - All documents to index are known
 - No iterative additions
- Bottom-up: Indexing on insertion
 - Documents are indexed as they are added to the collection
 - Optimizations (e.g. splitting) have to be done

Metric Index: Searching



Indexing

- Spatial Indexes
- MDS FastMap
- Locality Sensitive Hashing
- Metric Indexes
- Inverted Lists

Metric Spaces

• $\mathcal{M} = (\mathcal{D}, d)$

src. G. Amato & P. Savino, "Approximate Similarity Search in Metric Spaces Using Inverted Files ", Infoscale 2008

- Data domain ∅
- Total (distance) function d: $\mathcal{D} \times \mathcal{D} \rightarrow \mathbb{R}$ (metric function or metric)
- The metric space postulates:

Non negativity

 $\forall x, y \in \mathcal{D}, d(x, y) \ge 0$

Symmetry

 $\forall x, y \in \mathcal{D}, d(x, y) = d(y, x)$

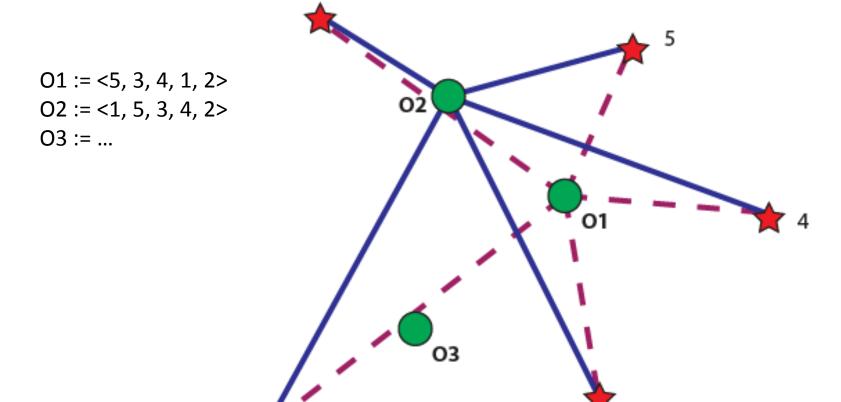
Identity

 $\forall x, y \in \mathcal{D}, x = y \Leftrightarrow d(x, y) = 0$

Triangle inequality

 $\forall x, y, z \in \mathcal{D}, d(x, z) \le d(x, y) + d(y, z)$

- Objects close to one another see the space in a "similar" way
- Choose a set of reference objects RO
- Orderings of RO according to the distances from two similar data objects are similar as well
 - Represent every data object o as an ordering of RO from o
 - Measure similarity between two data objects by measuring the similarity between the corresponding orderings



Spearman Footrule Distance

$$SFD(S_1, S_2) = \sum_{ro \in RO} |S_2(ro) - S_1(ro)|$$

[Slides G. Amato ...]

Thanks ...

