

VK Multimedia
Information Systems

Mathias Lux, mlux@itec.uni-klu.ac.at

Dienstags, 16.00 Uhr c.t., E.1.42

Information Retrieval Basics: Agenda

- Vector Retrieval Model
 - Exercise 02
- Other Retrieval Models
- Common Retrieval Methods
 - Query Modification
 - Co-Occurrence
 - Relevance Feedback
- Exercise 03

Vector Model

- Integrates the notion of partial match
- Non-binary weights (terms & queries)
- Degree of similarity computed

$$\vec{d}_{j} = (w_{1,j}, w_{2,j}, ..., w_{t,j})$$

$$\vec{q} = (w_{1,q}, w_{2,q}, ..., w_{t,q})$$

Vector model: Similarity

$$sim(d_{j},q) = \frac{\vec{d}_{j} \cdot \vec{q}}{\left| \vec{d}_{j} \right| \times \left| \vec{q} \right|} = \frac{\sum_{i=1}^{t} w_{i,j} \cdot w_{i,q}}{\sqrt{\sum_{i=1}^{t} w_{i,j}^{2} \cdot \sqrt{\sum_{i=1}^{t} w_{i,q}^{2}}}}$$

Vector Model: Example

$$\vec{0}$$
 = (0.3, 0.1, 0, 0.1, 1)
 $\vec{0}$ = (1, 0, 0, 0.5, 0)

$$Sim\left(\vec{0},\vec{9}\right) = \frac{1.0.3 + 0.1.0.5}{\sqrt{0.3^2 + 0.1^2 + 0.1^2 + 1.1 + 0.5^2}} \approx \frac{0.35}{2.24} \approx 0.17$$

Another Example:

Document & Query:

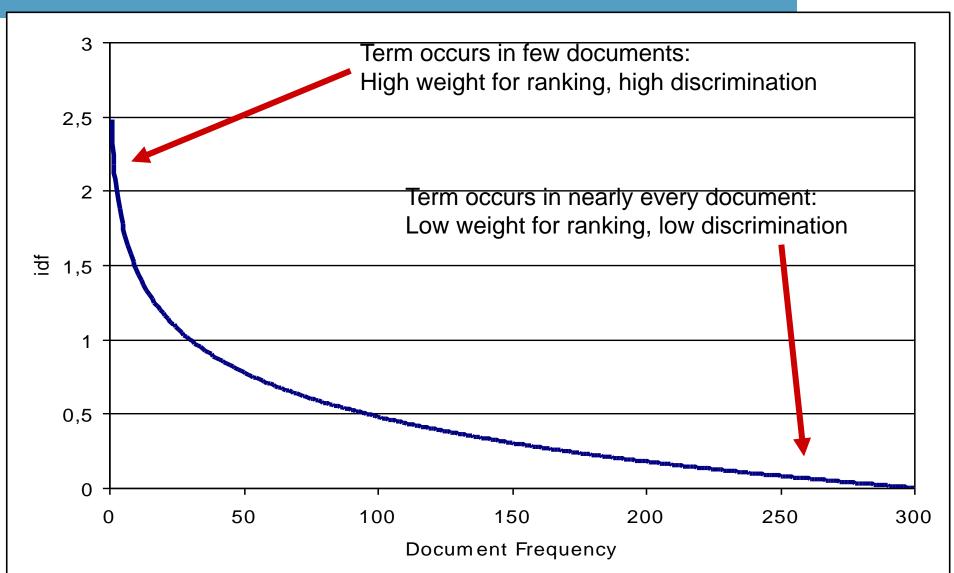
- D = "The quick brown fox jumps over the lazy dog"
- Q = "brown lazy fox"

$$sim(d_{j},q) = \frac{\vec{d}_{j} \bullet \vec{q}}{\left| \vec{d}_{j} \middle| \times \middle| \vec{q} \middle|} = \frac{\sum_{i=1}^{t} w_{i,j} \cdot w_{i,q}}{\sqrt{\sum_{i=1}^{t} w_{i,j}^{2}} \cdot \sqrt{\sum_{i=1}^{t} w_{i,q}^{2}}}$$

Results:

- $(1,1,1,1,1,1,1,1)^{t} * (1,1,1,0,0,0,0,0,0)^{t} = 3$
- sqrt(9) * sqrt(3) = 5,196
- Similarity = 3 / 5,196 = 0,577

Term weighting: TF*IDF


Term weighting increases retrieval performance

- Term frequency
 - How often does a term occur in a document?
 - Most intuitive approach
- Inverse Document Frequency
 - What is the information content of a term for a document collection?
 - Compare to Information Theory of Shannon

Example: IDF 300 documents corpus

Definitions: Normalized Term Frequency

$$f_{i,j} = \frac{freq_{i,j}}{\max_{l}(freq_{l,j})} \dots \text{normalized term frequency}$$

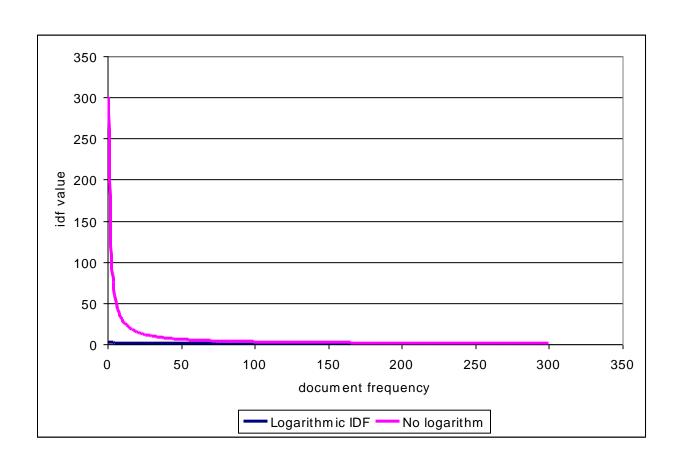
 $freq_{i,j}$... raw term frequency of term i in document j

- Maximum is computed over all terms in a document
- Terms which are not present in a document have a raw frequency of 0

Definitions: Inverse Document Frequency

$$idf_i = \log \frac{N}{n_i}$$
 ... inverse document frequency for term i

N ... number of documents in the corpus


 n_i ... number of document in the corpus which contain term i

- Note that idf_i is independent from the document.
- Note that the whole corpus has to be taken into account.

Why log(...) in IDF?

TF*IDF

- TF*IDF is a very prominent weighting scheme
 - Works fine, much better than TF or Boolean
 - Quite easy to implement

$$w_{i,j} = f_{i,j} \cdot \log \frac{N}{n_i}$$

Weighting of query terms

$$w_{i,q} = (0.5 + \frac{0.5 \cdot f_{i,q}}{\max_{l}(f_{l,q})}) \cdot \log \frac{N}{n_i}$$

- Also using IDF of the corpus
- But TF is normalized differently
 - -TF > 0.5
- Note: the query is not part of the corpus!

Vector Model

Advantages

- Weighting schemes improve retrieval performance
- Partial matching allows retrieving documents that approximate query conditions
- Cosine coefficient allows ranked list output
- Disadvantages
 - Term are assumed to be mutually independent

Simple example (i)

Scenario

- Given a document corpus on birds: nearly each document (say 99%) contains the word bird
- someone is searching for a document about sparrow nest construction with a query "sparrow bird nest construction"
- Exactly the document which would satisfy the user needs does not have the word "bird" in it.

Simple example (ii)

- TF*IDF weighting
 - knows upon the low discrimative power of the term bird
 - The weight of this term is near to zero
 - This term has virtually no influence on the result list.

Information Retrieval Basics: Agenda

- Vector Retrieval Model
 - Exercise 02
- Other Retrieval Models
- Common Retrieval Methods
 - Query Modification
 - Co-Occurrence
 - Relevance Feedback
- Exercise 03

Exercise 02

- Given a document collection ...
- Find the results to a query ...
 - Employing the Boolean model
 - Employing the vector model (with TF*IDF)
- Some hints:
 - Excel:
 - Sheet on homepage
 - Use functions "Summenprodukt" & "Quadratesumme"

Exercise 02

Document collection (6 documents)

- spatz, amsel, vogel, drossel, fink, falke, flug
- spatz, vogel, flug, nest, amsel, amsel, amsel
- kuckuck, nest, nest, ei, ei, ei, flug, amsel, amsel, vogel
- amsel, elster, elster, drossel, vogel, ei
- falke, katze, nest, nest, flug, vogel
- spatz, spatz, konstruktion, nest, ei

Queries:

- spatz, vogel, nest, konstruktion
- amsel, ei, nest

Exercise

	d1	d2	d3	d4	d6	d6	idf
amsel	1	3	2	1			
drossel	1			1			
ei			3	1		1	
elster				2			
falke	1				1		
fink	1						
flug	1	1	1		1		
katze					1		
konstruktion						1	
kuckuck			1				
nest		1	2		2	1	
spatz	1	1				2	
vogel	1	1	1	1	1		

Information Retrieval Basics: Agenda

- Vector Retrieval Model
 - Exercise 02
- Other Retrieval Models
- Common Retrieval Methods
 - Query Modification
 - Co-Occurrence
 - Relevance Feedback
- Exercise 03

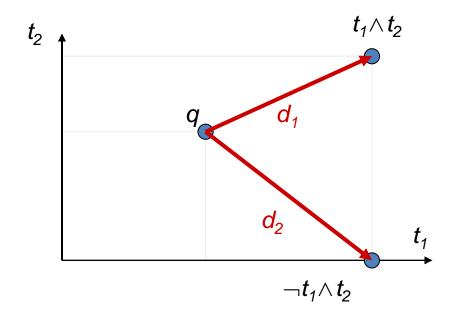
Other Retrieval Models: Set Theoretic Models

- Fuzzy Set Model
 - Each query term defines a fuzzy set
 - Each document has a degree of membership
 - Done e.g. with query expansion (co-occurrence or thesaurus)
- Extended Boolean Model
 - Incorporates non binary weights
 - Geometric interpretation: Distance between document vector and desired Boolean state (query)

Other Retrieval Models: Algebraic

- Generalized Vector Space Model
 - Term independence not necessary
 - Terms are not orthogonal and my be linear dependent.
 - Smaller linear independent units exist.

Set Theoretic Models: Fuzzy Set Model


- Each query term defines a fuzzy set
- Each document has a degree of membership
 - e.g. d_1 is part of set of term t_1 at 70%
- Done e.g. with query expansion (cooccurrence or thesaurus)

Set Theoretic Models: Extended Boolean Model

- Incorporates non binary weights
- Geometric interpretation:
 - Distance between document vector and
 - desired Boolean state (query)

Algebraic Models: Generalized Vector Space M.

- Term independence not necessary
- Terms (as dimensions) are not orthogonal and may be linear dependent.
- Smaller linear independent units exist.
 - m ... minterm
 - Constructed from co-occurrence: 2^t minterms
- Dimensionality a problem
 - Number of active minterms (which actually occur in a document)
 - Depends on the number of documents

- Introduced 1988, LSI / LSA
- Concept matching vs. term matching
- Mapping documents & terms to concept space:
 - Fewer dimensions
 - Like clustering

- Let M_{ij} be the document term matrix
 - with t rows (terms) and N cols (docs)
- Decompose M_{ij} into K*S*D^t
 - K .. matrix of eigenvectors from term-to-term (cooccurence) matrix
 - $-D^t$.. matrix of eigenvectors from doc-to-doc matrix
 - $-S...r \times r$ diagonal matrix of singular values with r=min(t,N), the rank of M_{ij}

- With $M_{ij} = K^*S^*D^t \dots$
- Only the s largest singular values from S:
 - Others are deleted
 - Respective columns in K and D^t remain
- $M_s = K_s * S_s * D_s^t \dots$
 - -s < r is new rank of M
 - s large enough to fit in all data
 - s small enough to cut out unnecessary details

- Reduced doc-to-doc matrix:
 - $-M_s^t * M_s$ is NxN Matrix quantifying the relationship between documents
- Retrieval is based on pseudo-document
 - Let column 0 in M_{ij} be the query
 - Calculate $M_s^t M_s$
 - First row (or column) gives the relevance

Advantages

- M even more sparse
- Retrieval on a "conceptual" level

Disadvantages

- Doc-to-doc matrix might be quite big
- Therefore: Processing time

Example of text data: Titles of Some Technical Memos

- c1: Human machine interface for ABC computer applications
- c2: A survey of user opinion of computer system response time
- c3: The EPS user interface management system
- c4: System and human system engineering testing of EPS
- c5: Relation of user perceived response time to error measurement
- m1: The generation of random, binary, ordered *trees*
- m2: The intersection *graph* of paths in *trees*
- m3: Graph minors IV: Widths of trees and well-quasi-ordering
- m4: Graph minors: A survey

$$\{X\} =$$

	c 1	c 2	c3	c 4	c 5	m1	m 2	m3	m4
human	1	0	0	1	0	0	0	0	0
interface	1	0	1	0	0	0	0	0	0
computer	1	1	0	0	0	0	0	0	0
user	0	1	1	0	1	0	0	0	0
system	0	1	1	2	0	0	0	0	0
response	0	1	0	0	1	0	0	0	0
time	0	1	0	0	1	0	0	0	0
EPS	0	0	1	1	0	0	0	0	0
survey	0	1	0	0	0	0	0	0	1
trees	0	0	0	0	0	1	1	1	0
graph	0	0	0	0	0	0	1	1	1
minors	0	0	0	0	0	0	0	1	1

from Landauer, T. K., Foltz, P. W., & Laham, D. (1998). Introduction to Latent Semantic Analysis. Discourse Processes, 25, 259-284.

$\{W\}$	=							
0.22 0.20 0.24	-0.11 -0.07 0.04	0.29 0.14 -0.16	-0.41 -0.55 -0.59	-0.11 0.28 -0.11	-0.34 0.50 -0.25	0.52 -0.07 -0.30	-0.06 -0.01 0.06	-0.41 -0.11 0.49
0.40	0.06	-0.34	0.10	0.33	0.38	0.00	0.00	0.01
0.64 0.27	-0.17 0.11	0.36	0.33 0.07	-0.16 0.08	-0.21 -0.17	-0.17 0.28	0.03 -0.02	0.27 -0.05
0.27	0.11	-0.43	0.07	0.08	-0.17	0.28	-0.02	-0.05
0.30 0.21	-0.14 0.27	0.33	0.19 -0.03	0.11 -0.54	0.27 0.08	0.03 -0.47	-0.02 -0.04	-0.17 -0.58
0.01	0.49	0.23	0.03	0.59	-0.39	-0.29	0.25	-0.23
0.04 0.03	0.62 0.45	0.22 0.14	0.00 -0.01	-0.07 -0.30	0.11 0.28	0.16 0.34	-0.68 0.68	0.23 0.18
0.03	0.43	0.14	-0.01	-0.30	0.26	0.54	0.00	0.16
$\{S\}$	=							
3.34								
	2.54	2.35						
			1.64	1.50				
				1.50	1.31			
						0.85		
							0.56	0.36
								0.50
$\{P\}$	=							
0.20	0.61	0.46	0.54	0.28	0.00	0.01	0.02	0.08
-0.06 0.11	0.17 -0.50	-0.13 0.21	-0.23 0.57	0.11 -0.51	0.19 0.10	0.44 0.19	0.62 0.25	0.53 0.08
-0.95	-0.03	0.04	0.27	0.15	0.02	0.02	0.01	-0.03
0.05 -0.08	-0.21 -0.26	0.38 0.72	-0.21 -0.37	0.33 0.03	0.39 -0.30	0.35 -0.21	0.15 0.00	-0.60 0.36
0.18	-0.43	-0.24	0.26	0.67	-0.34	-0.15	0.25	0.04
-0.01 -0.06	0.05 0.24	0.01 0.02	-0.02 -0.08	-0.06 -0.26	0.45 -0.62	-0.76 0.02	0.45 0.52	-0.07 -0.45
0.00	0.21	0.02	0.00	0.20	0.02	0.02	0.02	0.15

	c1	c2	c3	c4	c5	m1	m2	m3	m4
human	0.16	0.40	0.38	0.47	0.18	-0.05	-0.12	-0.16	-0.09
interface	0.14	0.37	0.33	0.40	0.16	-0.03	-0.07	-0.10	-0.04
computer	0.15	0.51	0.36	0.41	0.24	0.02	0.06	0.09	0.12
user	0.26	0.84	0.61	0.70	0.39	0.03	0.08	0.12	0.19
system	0.45	1.23	1.05	1.27	0.56	-0.07	-0.15	-0.21	-0.05
response	0.16	0.58	0.38	0.42	0.28	0.06	0.13	0.19	0.22
time	0.16	0.58	0.38	0.42	0.28	0.06	0.13	0.19	0.22
EPS	0.22	0.55	0.51	0.63	0.24	-0.07	-0.14	-0.20	-0.11
survey	0.10	0.53	0.23	0.21	0.27	0.14	0.31	0.44	0.42
trees	-0.06	0.23	-0.14	-0.27	0.14	0.24	0.55	0.77	0.66
graph	-0.06	0.34	-0.15	-0.30	0.20	0.31	0.69	0.98	0.85
minors	-0.04	0.25	-0.10	-0.21	0.15	0.22	0.50	0.71	0.62

	c 1	c 2	c3	c 4	c 5	m1	m2	m3	m4
human	1	0	0	1	0	0	0	0	0
interface	1	0	1	0	0	0	0	0	0
computer	1	1	0	0	0	0	0	0	0
user	0	1	1	0	1	0	0	0	0
system	0	1	1	2	0	0	0	0	0
response	0	1	0	0	1	0	0	0	0
time	0	1	0	0	1	0	0	0	0
EPS	0	0	1	1	0	0	0	0	0
survey	0	1	0	0	0	0	0	0	1
trees	0	0	O	0	0	1	1	1	0
graph	0	0	0	0	0	0	1	1	1
minors	0	0	0	0	0	0	0	1	1

Correlations between titles in raw data:

	c1	c2	c3	c4	c5	m1	m2	m3
c2	-0.19	•	-		-	-	•	
c3	0.00	0.00						
c4	0.00	0.00	0.47					
c5	-0.33	0.58	0.00	-0.31				
m1	-0.17	-0.30	-0.21	-0.16	-0.17			
m2	-0.26	-0.45	-0.32	-0.24	-0.26	0.67		
m3	-0.33	-0.58	-0.41	-0.31	-0.33	0.52	0.77	
m4	-0.33	- 0.19	-0.41	-0.31	-0.33	-0.17	0.26	0.56

0.02 -0.30 0.44

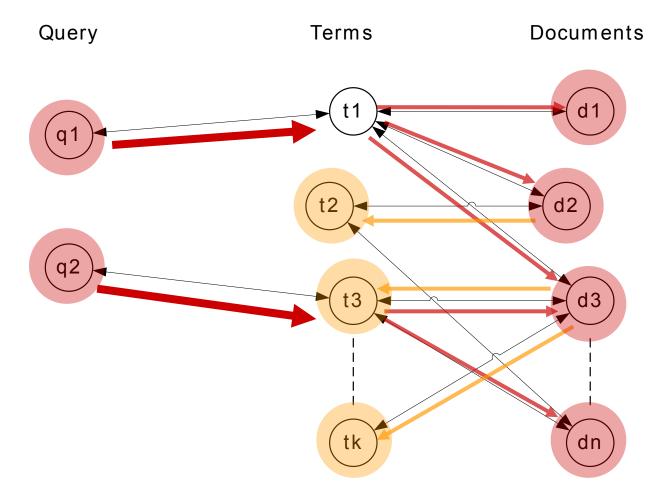
Correlations in two dimensional space:

c2	0.91							
c3	1.00	0.91						
c4	1.00	0.88	1.00					
c5	0.85	0.99	0.85	0.81				
m1	-0.85	-0.56	-0.85	-0.88	-0.45			
m2	-0.85	-0.56	-0.85	-0.88	-0.44	1.00		
m3	-0.85	-0.56	-0.85	-0.88	-0.44	1.00	1.00	
m4	-0.81	-0.50	-0.81	-0.84	-0.37	1.00	1.00	1.00


0.92 -0.72 1.00

- Neural Network:
 - Neurons emit signals to other neurons
 - Graph interconnected by synaptic connections
- Three levels:
 - Query terms, terms & documents

- Query term is "activated"
 - Usually with weight 1
 - Query term weight is used to "weaken" the signal
- Connected terms receive signal
 - Term weight "weakens" the signal
- Connected documents receive signal
 - Different activation sources are "combined"

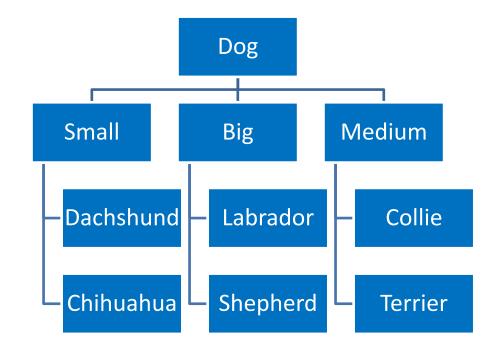


- First round query terms -> terms -> docs
 - Equivalent to vector model
- Further rounds increase retrieval performance

Information Retrieval Basics: Agenda

- Vector Retrieval Model
 - Exercise 02
- Other Retrieval Models
- Common Retrieval Methods
 - Query Modification
 - Co-Occurrence
 - Relevance Feedback
- Exercise 03

Query Modification


- Query expansion
 - General method to increase either
 - number of results
 - or accuracy
 - Query itself is modified:
 - Terms are added (co-occurrence, thesaurii)

Query Expansion

- Integrate existing knowledge
 - Taxonomies
 - Ontologies
- Modify query
 - Related terms
 - Narrower terms
 - Broader terms

Term Reweighting

- To improve accuracy of ranking
- Query term weights are changed
 - Note: no terms are added / removed
 - Result ranking changes

Information Retrieval Basics: Agenda

- Vector Retrieval Model
 - Exercise 02
- Other Retrieval Models
- Common Retrieval Methods
 - Query Modification
 - Co-Occurrence
 - Relevance Feedback
- Exercise 03

Co-Occurrence

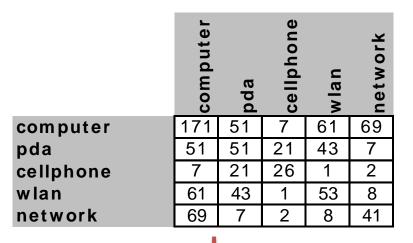
- Try to quantify the relation between terms
 - Based on how often they occur together
 - Not based on the position
- Let M_{ij} be the document term matrix
 - with t rows (terms) and N cols (docs)
- M*M^t (tx€×t) is the "co-occurrence" matrix

Co-Occurrence: Example

	d1	d2	d3	d4	d5
computer	7	7	0	8	3
pda	5	1	4	0	3
cellphone	0	1	5	0	0
wlan	6	1	0	0	4
network	1	2	0	6	0

7	5	0	6	1
7	1	1	1	2
0	4	5	0	0
8	0	0	0	6
3	3	0	4	0

Co-Occurrence: Example



	computer	pda	cellphone	wlan	network
computer	171	51	7	61	69
pda	51	51	21	43	7
cellphone	7	21	26	1	2
wlan	61	43	1	53	8
network	69	7	2	8	41

Co-Occurrence & Query Expansion

Query: cellphone

Query: cellphone OR pda

Information Retrieval Basics: Agenda

- Vector Retrieval Model
 - Exercise 02
- Other Retrieval Models
- Common Retrieval Methods
 - Query Modification
 - Co-Occurrence
 - Relevance Feedback
- Exercise 03

Popular Query Reformulation Strategy:

- User gets list of docs presented
- User marks relevant documents
- Typically~10-20 docs are presented
- Query is refined, new search is issued

Proposed Effect:

- Query moves more toward relevant docs
- Away from non relevant docs
- User does not have to tune herself

- $D_r \subset D...$ set of relevant docs identified by the user
- $D_n \subset D$... set of non relevant docs
- $C_r \subset D$... set of relevant docs
- α , β , γ ... tuning parameters

- Considering an optimal query
 - Unlikely and therefore hypothetical
- Which vector retrieves *C_r* best?

$$\vec{q}_{OPT} = \frac{1}{|C_r|} \cdot \sum_{\forall \vec{d}_j \in C_r} \vec{d}_j - \frac{1}{N - |C_r|} \cdot \sum_{\forall \vec{d}_j \notin C_r} \vec{d}_j$$

Rochio:
$$\vec{q}_m = \alpha \cdot \vec{q} + \frac{\beta}{|D_r|} \cdot \sum_{\forall \vec{d}_j \in D_r} \vec{d}_j - \frac{\gamma}{|D_n|} \cdot \sum_{\forall \vec{d}_j \in D_n} \vec{d}_j$$

Ide:
$$\vec{q}_m = \alpha \cdot \vec{q} + \beta \cdot \sum_{\forall \vec{d}_j \in D_r} \vec{d}_j - \gamma \cdot \sum_{\forall \vec{d}_j \in D_n} \vec{d}_j$$

Ide-Dec-Hi:
$$\vec{q}_m = \alpha \cdot \vec{q} + \beta \cdot \sum_{\forall \vec{d}_j \in D_r} \vec{d}_j - \gamma \max_{non-relevant} (\vec{d}_j)$$

- Rochio
 - Based on q_{OPT} , α was 1 in original idea
- Ide
 - $-\alpha = \beta = \gamma = 1$ in original idea
- Ide-Dec-Hi
 - $-\max_{\text{non-relevant}} \dots$ highest ranked doc of D_n
- All three techniques yield similar results ...

- Evaluation issues:
 - Boosts retrieval performance
 - Relevant documents are ranked top
 - But: Already marked by the user
- Evaluation remains complicated issue

Information Retrieval Basics: Agenda

- Vector Retrieval Model
 - Exercise 02
- Other Retrieval Models
- Common Retrieval Methods
 - Query Modification
 - Co-Occurrence
 - Relevance Feedback
- Exercise 03

Exercise 03

Co-Occurrence

- Document-term matrix from exercise 02
- Compute term-term co-occurrence
- Find the most 3 relevant terms for "kuckuck" and "ei"

Hints

- Use MMULT in Excel / OO Calc
- Consult help for matrix formulas
- Find .xls file on the course page

Exercise 03+

- Install R: http://www.r-project.org/
- Apply LSA to Exercise 03 before computing the term-term co-occurrence

 - x <- matrix(x, ncol=6)</p>
 - ?svd // helps with svd, %*% is matrix multiplication, use diag() for d

Thanks ...

for your attention!

