Information Retrieval

2nd Edition. London: Butterworths 1979 C.J. van Rijsbergen Information Retrieval Group, University of Glasgow Excerpt from http://www.dcs.gla.ac.uk/Keith/Chapter.1/Ch.1.html

INTRODUCTION

Information retrieval is a wide, often loosely-defined term but in these pages I shall be concerned only with automatic information retrieval systems. Automatic as opposed to manual and information as opposed to data or fact. Unfortunately the word information can be very misleading. In the context of information retrieval (IR), information, in the technical meaning given in Shannon's theory of communication, is not readily measured (Shannon and Weaver[1]). In fact, in many cases one can adequately describe the kind of retrieval by simply substituting 'document' for 'information'. Nevertheless, 'information retrieval' has become accepted as a description of the kind of work published by Cleverdon, Salton, Sparck Jones, Lancaster and others. A perfectly straightforward definition along these lines is given by Lancaster[2]: 'Information retrieval is the term conventionally, though somewhat inaccurately, applied to the type of activity discussed in this volume. An information retrieval system does not inform (i.e. change the knowledge of) the user on the subject of his inquiry. It merely informs on the existence (or non-existence) and whereabouts of documents relating to his request.' This specifically excludes Question-Answering systems as typified by Winograd[3] and those described by Minsky[4]. It also excludes data retrieval systems such as used by, say, the stock exchange for on-line quotations.

To make clear the difference between data retrieval (DR) and information retrieval (IR), I have listed in Table 1.1 some of the distinguishing properties of data and information retrieval.

	Data Retrieval	Information Retrieval
Matching	Exact match	Partial match, best match
Inference	Deduction	Induction
Model	Deterministic	Probabilistic
Classification	Monothetic	Polythetic
Query language	Artificial	Natural
Query specification	Complete	Incomplete
Items wanted	Matching	Relevant
Error response	Sensitive	Insensitive

Table 1.1 DATA RETRIEVAL OR INFORMATION RETRIEVAL?

One may want to criticise this dichotomy on the grounds that the boundary between the two is a vague one. And so it is, but it is a useful one in that it illustrates the range of complexity associated with each mode of retrieval.

Let us now take each item in the table in turn and look at it more closely. In data retrieval we are normally looking for an exact match, that is, we are checking to see whether an item is or is not present in the file. In information retrieval this may sometimes be of interest but more generally we want to find those items which partially match the request and then select from those a few of the best matching ones.

The inference used in data retrieval is of the simple deductive kind, that is, aRb and bRc then aRc. In information retrieval it is far more common to use inductive inference; relations are only specified with a degree of certainty or uncertainty and hence our confidence in the inference is variable. This distinction leads one to describe data retrieval as deterministic but information retrieval as probabilistic. Frequently Bayes' Theorem is invoked to carry out inferences in IR, but in DR probabilities do not enter into the processing.

Another distinction can be made in terms of classifications that are likely to be useful. In DR we are most likely to be interested in a monothetic classification, that is, one with classes defined by objects possessing attributes both necessary and sufficient to belong to a class. In IR such a classification is one the whole not very useful, in fact more often a polythetic classification is what is wanted. In such a classification each individual in a class will possess only a proportion of all the attributes possessed by all the members of that class. Hence no attribute is necessary nor sufficient for membership to a class.

The query language for DR will generally be of the artificial kind, one with restricted syntax and vocabulary, in IR we prefer to use natural language although there are some notable exceptions. In DR the query is generally a complete specification of what is wanted, in IR it is invariably incomplete. This last difference arises partly from the fact that in IR we are searching for relevant documents as opposed to exactly matching items. The extent of the match in IR is assumed to indicate the likelihood of the relevance of that item. One simple consequence of this difference is that DR is more sensitive to error in the sense that, an error in matching will not retrieve the wanted item which implies a total failure of the system. In IR small errors in matching generally do not affect performance of the system significantly.

[...]

Information retrieval

Since the 1940s the problem of information storage and retrieval has attracted increasing attention. It is simply stated: we have vast amounts of information to which accurate and speedy access is becoming ever more difficult. One effect of this is that relevant information gets ignored since it is never uncovered, which in turn leads to much duplication of work and effort. With the advent of computers, a great deal of thought has been given to using them to provide rapid and intelligent retrieval systems. In libraries, many of which certainly have an information storage and retrieval problem, some of the more mundane tasks, such as cataloguing and general administration, have successfully been taken over by computers. However, the problem of effective retrieval remains largely unsolved.

In principle, information storage and retrieval is simple. Suppose there is a store of documents and a person (user of the store) formulates a question (request or query) to which the answer

is a set of documents satisfying the information need expressed by his question. He can obtain the set by reading all the documents in the store, retaining the relevant documents and discarding all the others. In a sense, this constitutes 'perfect' retrieval. This solution is obviously impracticable. A user either does not have the time or does not wish to spend the time reading the entire document collection, apart from the fact that it may be physically impossible for him to do so.

When high speed computers became available for non-numerical work, many thought that a computer would be able to 'read' an entire document collection to extract the relevant documents. It soon became apparent that using the natural language text of a document not only caused input and storage problems (it still does) but also left unsolved the intellectual problem of characterising the document content. It is conceivable that future hardware developments may make natural language input and storage more feasible. But automatic characterisation in which the software attempts to duplicate the human process of 'reading' is a very sticky problem indeed. More specifically, 'reading' involves attempting to extract information, both syntactic and semantic, from the text and using it to decide whether each document is relevant or not to a particular request. The difficulty is not only knowing how to extract the information but also how to use it to decide relevance. The comparatively slow progress of modern linguistics on the semantic front and the conspicuous failure of machine translation (Bar-Hillel[5]) show that these problems are largely unsolved.

The reader will have noticed that already, the idea of 'relevance' has slipped into the discussion. It is this notion which is at the centre of information retrieval. The purpose of an automatic retrieval strategy is to retrieve all the *relevant* documents at the same time retrieving as few of the *non-relevant* as possible. When the characterisation of a document is worked out, it should be such that when the document it represents is relevant to a query, it will enable the document to be retrieved in response to that query. Human indexers have traditionally characterised documents in this way when assigning index terms to documents. The indexer attempts to anticipate the kind of index terms a user would employ to retrieve each document is relevant. When the indexing is done automatically it is assumed that by pushing the text of a document or query through the same automatic analysis, the output will be a representation of the content, and if the document is relevant to the query, a computational procedure will show this.

Intellectually it is possible for a human to establish the relevance of a document to a query. For a computer to do this we need to construct a model within which relevance decisions can be quantified. It is interesting to note that most research in information retrieval can be shown to have been concerned with different aspects of such a model.