VK Multimedia Information Systems

Mathias Lux, mlux@itec.uni-klu.ac.at

Dienstags, 16.00 Uhr c.t., E.2.69

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 2.0 License. See http://creativecommons.org/licenses/by-nc-sa/2.0/at/
Results Ex-03

Nach Form

Nach Semantik
Farbhistogramm:

1. Img2
2. Img7
3. Img5
4. Img3
5. Img4
6. Img6

<table>
<thead>
<tr>
<th></th>
<th>rot</th>
<th>weiß</th>
<th>schwarz</th>
<th>gelb/orange</th>
<th>grün</th>
<th>violett</th>
<th>grau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Img1</td>
<td>45</td>
<td>45</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Img2</td>
<td>10</td>
<td>55</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Img3</td>
<td>30</td>
<td>3</td>
<td>2</td>
<td>35</td>
<td>0</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>Img4</td>
<td>15</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>Img5</td>
<td>0</td>
<td>40</td>
<td>25</td>
<td>10</td>
<td>0</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>Img6</td>
<td>0</td>
<td>20</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>70</td>
</tr>
<tr>
<td>Img7</td>
<td>80</td>
<td>7</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
</tbody>
</table>
Nach Farbe:

Nach Formen:
Video Retrieval

- Applications
 - Video Summaries
 - Ex-04

- Indexing
 - Spatial Indexes
 - MDS - FastMap
 - Clustering
Video Summaries

- Methods for getting the most out of a video in minimum time

Editor’s Picks

- Rain Bus by invisibleLondon
 188 views

- Living the Dream by livingthedream
 66 views

- Politics in the Morning by Mylameis1111
 215 views

Recently Added

- The Money by tropfest@yourCut
 6 views

- HIP HOP 3 by IMAN
 20 views

- PublicDomainTV-Classics Marilyn-Monkey Business by PublicDomainTV
 10 views
Video Summary Example

IMB II

Autor: Neuschnied, Helmut
Genre: Daily news
Duration: 00:05:07 22 frames (25 fps)
Filesize: 53694468 Bytes

Aufzeichnung der ZIB Sport Sendung vom 10.05.2002.

Semantische Objekte:

Keyframes:

Decomposition

1. Scene 0
2. Scene 1
3. Scene 2
4. Scene 3
5. Scene 4
6. Scene 5
7. Scene 6
8. Scene 7
Key Frames

Goals

- Select appropriate frames for a summary
- Weight frames according to relevance
- Visualize in an ‘optimal’ way

Problems

- Which are the most relevant frames?
 - Sort out transitions, motion blurred frames
- How many are there?
Video Summaries: Animations

- Selection of key frames
- Rotated in a loop

http://www.myvideo.de/watch/1544203
Video Summaries: Animations
Video Summaries: Stripe Images

- Only one pixel column per frame
- Concatenate the pixel columns
 - frame height = stripe image height
 - frame number is stripe image width

Visualization Benefits
- Size of shots, Movement

Visualization Disadvantages
- No ‘big picture’
Video Summaries: Compositions

- List of relevant frames
 - Visualization based on relevance
 - Smaller previews less relevant
Video Summaries: Mosaics

- Most relevant frame
 - Displayed using frames
Video Summary Generation

• Approaches use most salient frames
 • Based on user attention models
 • Motion, static shots, faces, etc.
 • Clustering & SVD
 • Employ dimensionality reduction
 • Find groups and take representative group members
 • The bigger the group the more important
• Optimization
 • Minimizes sum of distances to all other frames.
 • While maximizing the distances between key frames
Exercise 04

- Create a video summary
 - ... of Chad Vader I – Day Shift Manager
 - http://www.youtube.com/watch?v=4wGR4-SeuJ0
- Use Video Downloader to grab video
 - http://javimoya.com/blog/youtube_de.php
- Decide yourself which visualization you want to implement ...
 - Do not use frames displaying text
- Send me the resulting image / document
Exercise 04 Option: Stripe Image

- Use **FFMPEG** to grab frames
 - e.g. the windows binary
 - `ffmpeg -i [invideo] -f image2 -ss frame%6d.png`
 - see e.g. http://wiki.cs.sfu.ca/vml/DigitalVideoHowTo

- Use e.g. **Irfanview** to put them together
 - Batch Processing -> Crop images ...
 - Image -> Panorama image ...
Video Retrieval

● Applications
 • Video Summaries
 • Ex-04

● Indexing
 • Spatial Indexes
 • MDS - FastMap
 • Metric Indexes
 • Clustering
Indexing Visual Information

- Text is indexed in inverted lists
 - Search time depends on # of terms
- Visual information expressed by “vectors”
 - Combined with a metric capturing the semantics of similarity
 - Inverted list does not work here
 - An “index of vectors” is needed
Indexing Visual Information

- Vectors describe “points in a space”
 - Space is n-dimensional
 - n might be rather big
- Metric describes distance between points
 - E.g. L1 or L2 …
- Query is also a vector := point
 - Searching for points (vectors) near to query
- Idea for index:
 - Index neighbourhood …
Spatial Indexes

Using equally sized rectangles (Optimal for L1 …)
Spatial Indexes

Using overlapping rectangles …
Spatial Indexes

● Common data structures
 • R Tree
 • R*, R+,
 • Overlapping rectangles
 • Search is a rectangle

 • Quadtree (Octtree)
 • Equally sized regions, subdivided
 • 4 quadrants or 8 octants
 • Search selects quadrants
R-Tree
Quadtree
Spatial Indexes: Drawbacks

- Data structures must minimize
 - false negatives (→ maximizes recall)
 - false positives (→ search time)
- Descriptors, metrics & parameters need to be selected at index time
 - Searches combining multiple descriptors are a complicated issue
- Work best for small n
 - MDS has to be applied ...
Multidimensional Scaling (MDS)

- Reducing the dimensions of a feature space
 - E.g. From 64 dimensions to 8
 - Without loosing too much information about neighbourhoods

- Applications in multimedia retrieval
 - Indexing based on coordinates
 - Spatial Indexes:
 - Data structures to find nearest neighbours fast
Multidimensional Scaling (MDS)

- **Interpolation: FastMap**
 - Linear in terms of objects
 - Used e.g. in IBM QBIC

- **Iterative: Force Directed Placement**
 - Iterative optimization of initial placement
 - Cubic runtime
FastMap

- For Each dimension d
 - Find Pivots (the most distant objects)
 - For each object, which is not a pivot
 - Interpolate position between pivots in this dimension
 - Next object
- Next Pivot
FastMap

Pivot 1

d(pivot1, p3)

x-position of p3

d(pivot2, p3)

Pivot 2
FastMap

y-position of p3
FastMap: Pivots
How to find optimal pivots?

- Select one object randomly -> P_1
- Select Object P_2 with maximum distance from P_1 to P_2
- If $d(P_1, P_2) < t$
 - Set $P_1 = P_2$
 - Goto (2)

Normally no threshold is used but this is done x times.
Force Directed Placement

- All objects are assigned coordinates
- For each object o
 - Movement vector $v = 0$
 - For each object p
 - Calculate repulsion & attraction forces between o & p
 - Compute movement vector $v(o, p)$ depending on the forces
 - $v = v + v(o, p)$

1. If overall movement is still high goto 2.
FDP: Parameters

- Gravity as overall attraction
 - Prevents uncontrolled spread
- Overall repulsion
 - Prevents coming objects from coming too close
- Minimum distance
 - If objects are on the coordinates
- Spring parameters
 - Repulsion stronger close up
 - Attraction stronger if far away
FDP
Demo

- Emir
Vielen Dank ...

... für die Aufmerksamkeit