VK Multimedia
Information Systems

Mathias Lux, mlux@itec.uni-klu.ac.at

Dienstags, 16.00 Uhr c.t., V.1.08

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 2.0 License. See http://creativecommons.org/licenses/by-nc-sa/2.0/at/
Video Retrieval

- Motivation & Problems
- Features & Descriptors
- Some Methods
 - Text Based
 - Shot Detection
- Video Retrieval Evaluation
- Applications
 - Video Summaries
Motivation

Szenario A: Ad Hoc Search - Pull Information

● Alice has heard about a recent event
 • Examples: Red Bull Air Race, etc.
● She wants to get an overview on
 1. Overview on context
 2. Coverage on the outcomes & highlights
Szenario A: Google Video
Szenario A: Web Site
Szenario A: Analysis

<table>
<thead>
<tr>
<th>Google Video</th>
<th>Air Race Web Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple (Term) Search</td>
<td>Navigation (Gallery -> Video)</td>
</tr>
<tr>
<td>Short and ambiguous descriptions</td>
<td>Clear and intuitive meta information (thumbnails)</td>
</tr>
<tr>
<td>No additional information /</td>
<td>Further information provided</td>
</tr>
<tr>
<td>interlinking</td>
<td></td>
</tr>
<tr>
<td>Fast, clean and efficient</td>
<td>Frisky and colorful interface</td>
</tr>
<tr>
<td>interface</td>
<td></td>
</tr>
<tr>
<td>Legal issues ...</td>
<td>No legal issues</td>
</tr>
</tbody>
</table>
Szenario B: Media Observation

- George B. wants to find everything
 - Concerning certain Persons / Communities
 - Capturing the mood of media

- This includes
 - News broadcasts (language independent)
 - YouTube, MyVideo, etc.
Problems

- Video Retrieval is a very broad field
 - Demands differ from professionals to hobbyists
- Videos are commonly rather ‘big’
 - Sighting of raw footage and search results is time consuming
 - Extraction, analysis and indexing of descriptors are challenging
- Indexing is rather complicated
 - Videos are multimodal
Example Problem: Size

- 15 minute video -> 25 fps, 720x576
 - # frames = 15 * 60 * 25 = 22,500
 - With 65k colors
 - Raw size = 22,500 * 720 * 576 * 2 ~ 17.4 GB
 - Indexed by color histogram
 - 256 colors with 256 levels each -> 16 Bit / frame
 - Size = 22.500 * 2 ~ 43.95 kB
 - In a video database
 - 1,000 videos -> ~ 44 MB descriptor data
 - 1,000,000 videos -> ~ 44 GB descriptor data
Video Retrieval

- Motivation & Problems
- Features & Descriptors
- Methods
 - Text Based
 - Shot Detection
- Video Retrieval Evaluation
- Applications
 - Video Summaries
Features and Descriptors

- Visual Descriptors:
 - Additional dimension: **Time**
 - Related to audio information
- Audio Descriptors
 - Related to visual information
- Multiple Streams
 - Different languages, comments
 - Different angles / viewpoints
GOP & GOF

Video stream is sequence of still images

● Instead of single picture
 • Group of Frames (short: GOF)
 • Group of Pictures (short: GOP)

● Color description of multiple frames
 • e.g. averaged
Temporal Segmentation

News Broadcast

News Report 1: New President
- Introduction 1
- Interview 1
 - Reporter Talking 1
 - President Talking 1
 - Reporter Talking 2
 - President Talking 2

News Report 2: Fire
- Introduction
 - Video Summary 1
 - View from helicopter
 - View from street (far)
 - View from street (near)
 - Reporter Talking 3
 - Interview 2
 - Fire Brigade Chief Talking 1
 ...

...
Temporal Segmentation

- A single decomposition
 - Three different levels
 - Non-overlapping segments
- Visual and audio descriptors
 - Attached to nodes
 - Describing frames of GOF
MPEG-7

- Multiple segmentation trees possible
- Different stream combined
- No “general description format”
 - How many segmentations / levels
 - Selection of descriptors at nodes
 - Interconnection of streams
Video Retrieval

- Motivation & Problems
- Features & Descriptors
- Some Methods
 - Text Based
 - Shot Detection
- Video Retrieval Evaluation
- Applications
 - Video Summaries
Text Based Retrieval

- Text annotations assigned to segments
 - Transcriptions, metadata, etc.
- Retrieval is based on text
 - Inverted lists
 - Retrieval of relevant parts/documents

Interview: Question A

Do you think the new Schwarzenegger movie is boring? Hmm, in my opinion, ...

Interview: Answer A

Hmm, in my opinion, ...
Text Based Retrieval: Applications

● Speech oriented videos
 • Speech recognition & manually
 • Transcription available for disabled people
 • Examples: News, Cartoons

● Metadata of videos
 • Tagging and descriptions like in YouTube
 • Manual annotations (e.g. sports videos)
 • Spotted keywords
Shot Detection

- Automatic Segmentation of video stream
 - Find frame where new shot starts
 - Find frame describing the shot best

Interview: Question A

Do you think the new Schwarzenegger movie is boring?

Hmm, in my opinion, ...

Interview: Answer A

time
Different Cuts

- Simple Cuts (elephantsdream)

- Transitions & combinations (casino royale)
Shot Detection: Methods

- **Uncompressed Domain**
 - Video is decoded
 - RGB or YUV values are used for computation

- **Compressed Domain**
 - Characteristics of the codec are exploited
Shot Detection: Uncompressed Domain

- Rather good methods already available
 - Detection up to 95%
 - Depends on domain
- Ad detection
 - Logo tracking in the corner of the frame
- News Broadcasts
 - Background tracking (studio environment)
- General approaches
 - Grey values / Color Histogram
Shot Detection: Uncompressed Domain

Common Algorithm

- For each frame n
 - Extract $histogram(n)$
 - Compute distance to $histogram(n-1)$: $d(n-1, n)$
 - If ($d(n-1, n) > threshold$) report shot boundary

Problems

- Each frame has to be decompressed
- Threshold is domain dependent.
Shot Detection: Compressed Domain

- Motion Vectors
 - Investigate major direction / amount changes
- Bit Rate
 - VBR: Higher amount -> shot boundary
- Number Macro Blocks / Type
 - More I-Blocks -> shot boundary
- Position of I-Frames
 - Actually a shot detection in encoding
Video Indexing based on Shots

- Indexing Shots instead of frames
 - Number of shots depends on the domain
 - Considerably smaller than number of frames
- What to index about a shot?
 - Identify one or more “key frames”
 - Index the key frames
- Retrieval based on shots
 - Result is “part of the video”
 - Grouping possible, weighting necessary
Video Retrieval

- Motivation & Problems
- Features & Descriptors
- Some Methods
 - Text Based
 - Shot Detection
- Video Retrieval Evaluation
- Applications
 - Video Summaries
Retrieval Evaluation

- Similar to IR Evaluation
- Several different tasks
 - Depending on the forum
Retrieval Evaluation Forums

- **TRECVID**
 - Indexing and searching in video DBs

- **VideoCLEF**
 - Video content in multilingual environments

- **INEX Multimedia**
 - XML (Fragments) based multimedia retrieval
TRECVID 2007

● Shot boundary Detection
 • Automatic comparison to human annotation reference data.

● High Level Feature Extraction
 • Classification based on 39 concepts

● Search
 • Ranked list based on shots compared to test collection
 • automatic, manually assisted & interactive

● Rushes Summarization
 • Management of raw video material (near duplicate scenes, no audio etc.)
 • Evaluation by a single human judge
VideoCLEF 2008

- Classification Task: Vid2RSS
 - Dutch television footage
 - Dual language: English & Dutch
 - Both contribute, not translations
 - Transcriptions, keyframes, metadata provided
 - Task: RSS feed for each category

- ImageCLEF
 - Image retrieval tasks
INEX Multimedia

- Retrieving relevant document fragments with multimedia character
- Input (Query):
 - Either Text or Text & Image
- Output (Result):
 - Image or text or both
- Evaluation
 - Human assessment
Video Retrieval

- Motivation & Problems
- Features & Descriptors
- Some Methods
 - Text Based
 - Shot Detection
- Video Retrieval Evaluation
- Applications
 - Video Summaries
Video Summaries

● Methods for getting the most out of a video in minimum time
Video Summary Example

Autor: Neuschnied, Helmut
Genre: Daily news
Duration: 00:05:07 22 frames (25 fps)
Filesize: 53694468 Bytes

Aufzeichnung der ZIB Sport Sendung vom 10.05.2002.

Komplexische Objekte:

Keyframes:

Decomposition

1. Scene 0
2. Scene 1
3. Scene 2
4. Scene 3
5. Scene 4
6. Scene 5
7. Scene 6
8. Scene 7
Key Frames

Goals
● Select appropriate frames for a summary
● Weight frames according to relevance
● Visualize in an ‘optimal’ way

Problems
● Which are the most relevant frames?
 • Sort out transitions, motion blurred frames
● How many are there?
Video Summaries: Animations

- Selection of key frames
- Rotated in a loop

http://www.myvideo.de/watch/1544203
Video Summaries: Stripe Images

- Only one pixel column per frame
- Concatenate the pixel columns
 - frame height = stripe image height
 - frame number is stripe image width

Visualization Benefits
- Size of shots, Movement

Visualization Disadvantages
- No ‘big picture’
Video Summary Generation

- Approaches use most salient frames
 - Based on user attention models
 - Motion, static shots, faces, etc.
 - Clustering & SVD
 - Employ dimensionality reduction
 - Find groups and take representative group members
 - The bigger the group the more important
- Optimization
 - Minimizes sum of distances to all other frames.
 - While maximizing the distances between key frames
Exercise 04

- Create a video summary
 - ... of Chad Vader I – Day Shift Manager
 - http://www.youtube.com/watch?v=4wGR4-SeuJ0
- Use Video Downloader to grab video
 - http://javimoya.com/blog/youtube_de.php
- Decide yourself which visualization you want to implement ...
 - Do not use frames displaying text
- Send me the resulting image / document
Exercise 04 Option: Stripe Image

- Use **FFMPEG** to grab frames
 - e.g. the windows binary
 - `ffmpeg -i [invideo] -f image2 -ss frame%6d.png`
 - see e.g. http://wiki.cs.sfu.ca/vml/DigitalVideoHowTo

- Use e.g. **Irfanview** to put them together
 - Batch Processing -> Crop images ...
 - Image -> Panorama image ...
Thank you ...

... for your attention