

VK Multimedia Information Systems

Mathias Lux, mlux@itec.uni-klu.ac.at

Dienstags, 16.00 Uhr c.t., V.1.08

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 2.0 License. See http://creativecommons.org/licenses/by-nc-sa/2.0/at/

Video Retrieval

- Motivation & Problems
- Features & Descriptors
- Some Methods
 - Text Based
 - Shot Detection
- Video Retrieval Evaluation
- Applications
 - Video Summaries

Motivation

Szenario A: Ad Hoc Search - Pull Information

- Alice has heard about a recent event
 - Examples: Red Bull Air Race, etc.
- She wants to get an overview on
 - 1. Overview on context
 - 2. Coverage on the **outcomes & highlights**

Szenario A: Google Video

http://www.uni-klu.ac.a

Szenario A: Web Site

http://www.uni-klu.ac.a

Szenario A: Analysis

Google Video	Air Race Web Site
Simple (Term) Search	Navigation (Gallery -> Video)
Short and ambiguous descriptions	Clear and intuitive meta information (thumbnails)
No additional information / interlinking	Further information provided
Fast, clean and efficient interface	Frisky and colorful interface
Legal issues	No legal issues

Szenario B:

Szenario B: Media Obervation

- George B. wants to find everything
 - Concerning certain Persons / Communities
 - Capturing the mood of media
- This includes
 - News broadcasts (language independent)
 - YouTube, MyVideo, etc.

Problems

- Video Retrieval is a very broad field
 - Demands differ from professionals to hobbyists
- Videos are commonly rather 'big'
 - Sighting of raw footage and search results is time consuming
 - Extraction, analysis and indexing of descriptors are challenging
- Indexing is rather complicated
 - Videos are multimodal

Example Problem: Size

- 15 minute video -> 25 fps, 720x576
 - # frames = 15 * 60 * 25 = 22,500
 - With 65k colors
 - Raw size = 22,500 * 720 * 576 * 2 ~ 17.4 GB
 - Indexed by color histogram
 - 256 colors with 256 levels each -> 16 Bit / frame
 - Size = $22.500 * 2 \sim 43.95 \text{ kB}$
 - In a video database
 - 1,000 videos -> ~ 44 MB descriptor data
 - 1,000,000 videos -> ~ 44 GB descriptor data

Video Retrieval

- Motivation & Problems
- Features & Descriptors
- Methods
 - Text Based
 - Shot Detection
- Video Retrieval Evaluation
- Applications
 - Video Summaries

Features and Descriptors

- Visual Descriptors:
 - Additional dimension: Time
 - Related to audio information
- Audio Descriptors
 - Related to visual information
- Multiple Streams
 - Different languages, comments
 - Different angles / viewpoints

GOP & GOF

Video stream is sequence of still images

- Instead of single picture
 - Group of Frames (short: GOF)
 - Group of Pictures (short: GOP)
- Color description of multiple frames
 - e.g. averaged

Temporal Segmentation

Temporal Segmentation

http://www.uni-klu.ac.at

- A single decomposition
 - Three different levels
 - Non-overlapping segments
- Visual and audio descriptors
 - Attached to nodes
 - Describing frames of GOF

MPEG-7

- Multiple segmentation trees possible
- Different stream combined
- No "general description format"
 - How many segmentations / levels
 - Selection of descriptors at nodes
 - Interconnection of streams

Video Retrieval

- Motivation & Problems
- Features & Descriptors
- Some Methods
 - Text Based
 - Shot Detection
- Video Retrieval Evaluation
- Applications
 - Video Summaries

Text Based Retrieval

- Text annotations assigned to segments
 - Transcriptions, metadata, etc.
- Retrieval is based on text
 - Inverted lists
 - Retrieval of relevant parts/documents

Text Based Retrieval: Applications

- Speech oriented videos
 - Speech recognition & manually
 - Transcription available for disabled people
 - Examples: News, Cartoons
- Metadata of videos
 - Tagging and descriptions like in YouTube
 - Manual annotations (e.g. sports videos)
 - Spotted keywords

Shot Detection

- Automatic Segmentation of video stream
 - Find frame where new shot starts
 - Find frame describing the shot best

Different Cuts

Simple Cuts (elephantsdream)

Transitions & combinations (casino royale)

Shot Detection: Methods

- Uncompressed Domain
 - Video is decoded
 - RGB or YUV values are used for computation
- Compressed Domain
 - Characteristics of the codec are exploited

Shot Detection: Uncompressed Domain

- Rather good methods already available
 - Detection up to 95%
 - Depends on domain
- Ad detection
 - Logo tracking in the corner of the frame
- News Broadcasts
 - Background tracking (studio environment)
- General approaches
 - Grey values / Color Histogram

Shot Detection: Uncompressed Domain

Common Algorithm

- For each frame n
 - Extract histogram(n)
 - Compute distance to histogram(n-1): d(n-1, n)
 - If (d(n-1, n) > threshold) report shot boundary
- Problems
 - Each frame has to be decompressed
 - Threshold is domain dependent.

Shot Detection: Compressed Domain

- Motion Vectors
 - Investigate major direction / amount changes
- Bit Rate
 - VBR: Higher amount -> shot boundary
- Number Macro Blocks / Type
 - More I-Blocks -> shot boundary
- Position of I-Frames
 - Actually a shot detection in encoding

Video Indexing based on Shots

- Indexing Shots instead of frames
 - Number of shots depends on the domain
 - Considerably smaller than number of frames
- What to index about a shot?
 - Identify one or more "key frames"
 - Index the key frames
- Retrieval based on shots
 - Result is "part of the video"
 - Grouping possible, weighting neccessary

Video Retrieval

- Motivation & Problems
- Features & Descriptors
- Some Methods
 - Text Based
 - Shot Detection
- Video Retrieval Evaluation
- Applications
 - Video Summaries

Retrieval Evaluation

- Similar to IR Evaluation
- Several different tasks
 - Depending on the forum

Retrieval Evaluation Forums

- TRECVID
 - Indexing and searching in video DBs
- VideoCLEF
 - Video content in multilingual environments
- INEX Multimedia
 - XML (Fragments) based multimedia retrieval

TRECVID 2007

- Shot boundary Detection
 - Automatic comparison to human annotation reference data.
- High Level Feature Extraction
 - Classification based on 39 concepts
- Search
 - Ranked list based on shots compared to test collection
 - automatic, manually assisted & interactive
- Rushes Summarization
 - Management of raw video material (near duplicate scenes, no audio etc.)
 - Evaluation by a single human judge

VideoCLEF 2008

- Classification Task: Vid2RSS
 - Dutch television footage
 - Dual language: English & Dutch
 - Both contribute, not translations
 - · Transcriptions, keyframes, metadata provided
 - Task: RSS feed for each category
- ImageCLEF
 - Image retrieval tasks

INEX Multimedia

- Retrieving relevant document fragments with multimedia character
- Input (Query):
 - Either Text or Text & Image
- Output (Result):
 - Image or text or both
- Evaluation
 - Human assessment

Video Retrieval

- Motivation & Problems
- Features & Descriptors
- Some Methods
 - Text Based
 - Shot Detection
- Video Retrieval Evaluation
- Applications
 - Video Summaries

Video Summaries

nttp.//www.um-kiu.ac.at

 Methods for getting the most out of a video in minimum time

Ram Bus by invisibleeng 160 views

Living the Dream by livingthedream 66 views

Politics in the Morning by MyNameisBill 258 views

more

Recently Added

The Money by tropfest@yourCut 6 views

HIP HOP 3 by HMAN 24 views

PublicDomainTV-Classic Marilyn-Monkey Business by PublicDomainTV 16 views

Video Summary Example

Key Frames

Goals

- Select appropriate frames for a summary
- Weight frames according to relevance
- Visualize in an 'optimal' way

Problems

- Which are the most relevant frames?
 - Sort out transitions, motion blurred frames
- How many are there?

Video Summaries: Animations

- Selection of key frames
- Rotated in a loop

http://www.myvideo.de/watch/1544203

Video Summaries: Stripe Images

- Only one pixel column per frame
- Concatenate the pixel columns
 - frame height = stripe image heigth
 - frame number is stripe image width
- Visualization Benefits
 - Size of shots, Movement
- Visualization Disadvantages
 - No 'big picture'

Video Summary Generation

- Approaches use most salient frames
 - Based on user attention models
 - Motion, static shots, faces, etc.
 - Clustering & SVD
 - Employ dimensionality reduction
 - Find groups and take representative group members
 - The bigger the group the more important
 - Optimization
 - Minimizes sum of distances to all other frames.
 - While maximizing the distances between key frames

Exercise 04

- Create a video summary
 - ... of Chad Vader I Day Shift Manager
 - http://www.youtube.com/watch?v=4wGR4-SeuJ0
- Use Video Downloader to grab video
 - http://javimoya.com/blog/youtube_de.php
- Decide yourself which visualization you want to implement ...
 - Do not use frames displaying text
- Send me the resulting image / document

Exercise 04 Option: Stripe Image

- Use **FFMPEG** to grab frames
 - e.g. the windows binary
 - ffmpeg -i [invideo] -f image2 -ss frame%6d.png
 - see e.g. http://wiki.cs.sfu.ca/vml/DigitalVideoHowTo
- Use e.g. Irfanview to put them together
 - Batch Processing -> Crop images ...
 - Image -> Panorama image ...

Thank you ...

... for your attention

