

"Multimedia Information Systems" at Klagenfurt University

Guest Lecture "Social Network Analysis"

Markus Strohmaier

Univ. Ass. / Assistant Professor Knowledge Management Institute Graz University of Technology, Austria

e-mail: <u>markus.strohmaier@tugraz.at</u> web: <u>http://www.kmi.tugraz.at/staff/markus</u>

About me

Education:

- 2002 2004
 - PhD. in Knowledge Management, Faculty of Computer Science, TU Graz
- 1997 2002
 - M.Sc., Telematik, TU Graz

Background:

- July 2007 present
 - Ass. Prof. (Univ.Ass.), TU Graz, Austria
- 2006 2007
 - 15 months Post-Doc, University of Toronto, Canada
- 2002 2006
 - Researcher, Know-Center, Austria

Overview

Agenda:

A selection of concepts from Social Network Analysis

- Sociometry, adjacency lists and matrices
- One mode, two mode and affiliation networks
- KNC Plots
- Prominence and Prestige
- Excerpts from Current Research "Social Web"

The Erdös Number

Who was Paul Erdös?

http://www.oakland.edu/enp/

A famous Hungarian Mathematician, 1913-1996 Erdös posed and solved problems in number theory and other areas and founded the field of discrete mathematics.

- 511 co-authors (Erdös number 1)
- ~ 1500 Publications

The Erdös Number

The Erdös Number:

Through how many research collaboration links is an arbitrary scientist connected to Paul Erdös?

What is a research collaboration link? Per definition: Co-authorship on a scientific paper -> Convenient: Amenable to computational analysis

What is my Erdös Number?

me -> S. Easterbrook -> A. Finkelstein -> D. Gabbay -> S. Shelah -> P. Erdös

→ 5

43things.com

- Users
- Listing and
- Tagging goals

A tripartite graph

• User-Tag-Goal

Sociometry as a precursor of (social) network analysis [Wasserman Faust 1994]

- Jacob L. Moreno, 1889 1974
- Psychiatrist,

- born in Bukarest, grew up in Vienna, lived in the US
- Worked for Austrian Government
- Driving research motivation (in the 1930's and 1940's):
 - Exploring the advantages of picturing interpersonal interactions using sociograms, for sets with many actors

Sociometry [Wassermann and Faust 1994]

 Sociometry is the study of positive and negative relations, such as liking/disliking and friends/enemies among a set of people. Can you give an example of web formats that capture such relationships?

FOAF: Friend of a Friend, http://www.foaf-project.org/

XFN: XHTML Friends Network, http://gmpg.org/xfn/

- A social network data set consisting of people and measured affective relations between people is often referred to as a sociometric dataset.
- Relational data is often presented in two-way matrices termed sociomatrices.

Sociometry [Wassermann and Faust 1994]

Fig. 3.2. The six actors and the three sets of directed lines — a multi-variate directed graph

Images Wasserman/Faust page 76 & 82

Table 3.1. Sociomatrices for the six actors and three relations of Figure 3.2

	Frien	dship at	Beginni	ng of Yea	ır		
	Allison	Drew	Eliot	Keith	Ross	Sarah	
Allison	-	1	0	0	1	0	
Drew	0	-	1	0	0	1	
Eliot	0	1	-	0	0	0	Solid lines
Keith	0	0	0	-	1	0	
Ross	0	0	0	0	-	1	
Sarah	0	1	0	0	0	-	
	F	riandshin	at Fnd	of Vear			
	Allison	Drew	Eliot	Keith	Ross	Sarah	
Allison	-	1	0	0	1	0	
Drew	0	-	1	0	1	1	
Eliot	0	0	-	0	1	0	dashed lines
Keith	0	1	0	-	1	0	
Ross	0	0	0	1	-	1	
Sarah	0	1	0	0	0	-	
		Lin	on Maan				
	Allison	Drew	Eliot	Keith	Ross	Sarah	
Allison	-	0	0	0	1	1	
Drew	0	-	1	0	0	0	
Eliot	0	1	-	0	0	0	dotted lines
Keith	0	0	0	-	1	1	
Ross	1	0	0	1	-	1	
Sarah	1	0	0	1	1	-	

How can we represent (social) networks?

We will discuss three basic forms:

- Adjacency lists
- Adjacency matrices
- Incident matrices

Adjacency Matrix (or Sociomatrix)

- Complete description of a graph
- The matrix is symmetric for nondirectional graphs
- A row and a column for each node
- Of size m x n (m rows and n colums)

Adjacency matrices

taken from http://courseweb.sp.cs.cmu.edu/~cs111/applications/ln/lecture18.html

Adjacency lists

taken from http://courseweb.sp.cs.cmu.edu/~cs111/applications/ln/lecture18.html

Incidence Matrix

- (Another) complete description of a graph
- Nodes indexing the rows, lines indexing the columns
- g nodes and L lines, the matrix I is of size g x L
- A "1" indicates that a node n_i is incident with line l_i
- Each column has exactly two 1's in it

Fundamental Concepts in SNA

[Wassermann and Faust 1994]

- Actor
 - Social entities

- Which networks would not qualify as social networks?
- Def: Discrete individual, corporate or collective social units
- Examples: people, departments, agencies
- Relational Tie
 - Social ties

Which relations would not qualify as social relations?

- Examples: Evaluation of one person by another, transfer of resources, association, behavioral interaction, formal relations, biological relationships
- Dyad
 - Emphasizes on a tie between two actors
 - Def: A dyad consists of two actors and a tie between them
 - An inherent property between two actors (not pertaining to a single one)
 - Analysis focuses on dyadic properties
 - Example: Reciprocity, trust

Fundamental Concepts in SNA [Wassermann and Faust 1994]

- Triad
 - Def: A subgroup of three actors and the possible ties among them

- Transitivity
 - If actor i "likes" j, and j "likes" k, then i also "likes" k
- Balance
 - If actor i and j like each other, they should be similar in their evaluation of some k
 - If actor i and j dislike each other, they shold evaluate k differently

Fundamental Concepts in SNA [Wassermann and Faust 1994]

Social Network

- Definition: Consists of a finite set or sets of actors and the relation or relations defined on them
- Focus on relational information, rather than attributes of actors

One and Two Mode Networks

- The mode of a network is the number of sets of entities on which structural variables are measured
- The number of modes refers to the number of distinct kinds of social entities in a network
- One-mode networks study just a single set of actors
- Two mode networks focus on **two sets of actors**, or on **one set of actors** and **one set of events**

23

Two Mode Networks

- Example:
- Two types of nodes

Affiliation Networks

- Affiliation networks are two-mode networks
 - Nodes of one type "affiliate" with nodes of the other type (only!)
- Affiliation networks consist of subsets of actors, rather than simply pairs of actors
- Connections among members of one of the modes are based on linkages established through the second
- Affiliation networks allow to study the dual perspectives of the actors and the events

Is this an Affiliation Network? Why/Why not?

Examples of Affiliation Networks on the Web

- Facebook.com users and groups/networks
- XING.com users and groups
- Del.icio.us users and URLs
- Bibsonomy.org users and literature
- Netflix customers and movies
- Amazon customers and books
- Scientific network of authors and articles
- etc

Representing Affiliation Networks As Two Mode Sociomatrices

	Allison	Drew	Eliot	Keith	Ross	Sarah	Party 1	Party 2	Party 3
Allison	-	0	0	0	0	0	1	0	1
Drew	0	-	0	0	0	0	0	ť	0
Eliot	0	0		0	0	0	Ő	1	1
Keith	0	0	0		0	0	Ő	ô	1
Ross	0	0	0	0	-	ŏ	ĩ	ĭ	î
Sarah	0	0	0	0	0		1	î	ò
Party 1	1	0	0	0	1	1	-	0	0
Party 2	0	1	1	0	1	1	0		õ
Party 3	1	0	1	1	1	Ó	õ	0	

Fig. 8.3. Sociomatrix for the bipartite graph of six children and three parties

Markus Strohmaier

Two Mode Networks and One Mode Networks

- **Folding** is the process of transforming two mode networks into one mode networks
- Each two mode network can be folded into 2 one mode networks

Transforming Two Mode Networks into One Mode Networks

•Two one mode (or co-affiliation) networks (folded from the children/party affiliation network)

C...Children P...Party

Transforming Two Mode Networks into

*

'Falksches Schema'						
		-1	0			
	*/+	2	-3			
2	3	4	-9			
1	-7	-15	21			
-2	5	12	-15			

$$\mathbf{M}_{\mathbf{P}} = \mathbf{M}_{\mathbf{PC}} * \mathbf{M}_{\mathbf{PC}}$$

C...Children

P...Party

	Allison	Drew	Eliot	Keith	Ross	Sarah
Party 1	1	0	0	0	1	1
Party 2	0	1	1	0	1	1
Party 3	1	0	1	1	1	0

		Party 1	Party 2	Party 3
	Party 1	3	2	2
=	Party 2	2	4	2
	Party 3	2	2	4

	Party 1	Party 2	Party 3
Allison	1	0	1
Drew	0	1	0
Eliot	0	1	1
Keith	0	0	1
Ross	1	1	1
Sarah	1	1	0

Output: Weighted regular graph

Markus Strohmaier

The k-neighborhood graph, G_k

Given bipartite graph B, users on left, interests on right

The k-neighborhood graph, G_k

Given bipartite graph B, users on left, interests on right

The k-neighborhood graph, G_k

Given bipartite graph B, users on left, interests on right

The k-neighborhood graph, G_k

Given bipartite graph B, users on left, interests on right

The KNC-plot

The k-neighbor connectivity plot

- How many connected components does G_k have?
- What is the size of the largest component?

Answers the question:

how many shared interests are meaningful?

- Communities, Cuts

Analysis

Four graphs:

- LiveJournal
 - Blogging site, users can specify interests
- Y! query logs (interests = queries)
 - Queries issued for Yahoo! Search (Try it at www.yahoo.com)
- Content match (users = web pages, interests = ads)
 - Ads shown on web pages
- Flickr photo tags (users = photos, interests = tags)

All data anonymized, sanitized, downsampled

- Graphs have 100s of thousands to a million users

Centrality and Prestige [Wasserman Faust 1994]

Which actors are the most important or the most prominent in a given social network?

What kind of measures could we use to answer this (or similar questions)?

- What are the implications of directed/undirected social graphs on calculating prominence?
- In directed graphs, we can use Centrality and Prestige
- ⇒ In undirected graphs, we can only use Centrality

Prominence [Wasserman Faust 1994]

We will consider an actor to be prominent if the ties of the actor make the actor particularly visible to the other actors in the network.

Actor Centrality [Wasserman Faust 1994]

Prominent actors are those that are extensively involved in relationships with other actors.

This involvement makes them more visible to the others

No focus on directionality -> what is emphasized is that the actor is involved

A *central actor* is one that is involved in many ties. [cf. Degree of nodes]

Actor Prestige [Wasserman Faust 1994]

- A prestigious actor is an actor who is the object of extensive ties, thus focusing solely on the actor as a recipient.
- [cf. indegree of nodes]

Only quantifiable for directed social graphs.

Also known as status, rank, popularity

Different Types of Centrality in Undirected Social Graphs [Wasserman Faust 1994]

Degree Centrality

- Actor Degree Centrality:
 - Based on degree only

Closeness Centrality

- Actor Closeness Centrality:
 - Based on how close an actor is to all the other actors in the set of actors
 - Central nodes are the nodes that have the shortest paths to all other nodes

Betweeness Centrality

- Actor Betweeness Centrality:
 - An actor is central if it *lies between other actors* on their geodesics
 - The central actor must be between many of the actors via their geodesics

Centrality and Prestige in Undirected Social Graphs [Wasserman Faust 1994]

Fig. 5.1. Three illustrative networks for the study of centrality and prestige

43things.com

What cliques can

Cliques, Subgroups [Wasserman Faust 1994]

Definition of a Clique

 A clique in a graph is a maximal complete subgraph of three or more nodes.

Remark:

- Restriction to at least three nodes ensures that dyads are not considered to be cliques
- Definition allows cliques to overlap

Informally:

 A collection of actors in which each actor is adjacent to the other members of the clique

Fig. 7.1. A graph and its cliques

Subgroups [Wasserman Faust 1994]

Cliques are very strict measures

- Absence of a single tie results in the subgroup not being a clique
- Within a clique, all actors are theoretically identical (no internal differentiation)
- Cliques are seldom useful in the analysis of actual social network data because definition is overly strict
- So how can the notion of cliques be extended to make the resulting subgroups more substantively and theoretically interesting?

⇒ Subgroups based on reachability and diameter

Which 2-cliques

can you identify in the following

graph?

n cliques [Wasserman Faust 1994]

N-cliques require that the **geodesic distances** among members of a subgroup **are small** by defining a **cutoff value n** as the maximum length of geodesics connecting pairs of actors within the cohesive subgroup.

An n-clique is a maximal complete subgraph in which the largest geodesic distance between any two nodes is no greater than n.

Fig. 7.2. Graph illustrating n-cliques, n-clans, and n-clubs

Fig. 7.2. Graph illustrating n-cliques, n-clans, and n-clubs

 \bullet

•

۲

43 Things

43things.com

Home | Zeitgeist | Your O Things | Log Out |

Search

GO

43 start running again

3 Two-mode networks 352 people want to do this... start running again I want to do this - User-Goal People doing this: - Goal-Tag peaceful24 pepper Popular Tags: San Jose 8 entries - User-Tag 28 entries cardio determination exercise fitness health improvement life personal run running <u>fmiller</u> <u>mcfun</u> Frankfurt am Main Ontario Your Tags: 4 entries 3 entries No tags yet. We have combined information 🚹 Add tags Andilee1976 TrudiChavez Richmond Virginia from the 3 entries 3 entries Sponsored Links Sale: Running User-Goal and Caffiend the fringed one Rund ums Joggen - jetzt günstig bei Davis Perth neckermann.at bestellen & sparen! 2 entries 2 entries www.neckermann.at/Joggen Goal-Tag UK Gear Running Shoes swade val576 Richmond Sonoma Designed with the British Military 2-mode networks to construct The most durable shoes available 2 entries 2 entries www.ukgear.com and study large-scale goal We Have Your Match Here 20 Million Cute Singles Worldwide association graphs - See all 352 people Meet Singles Near your location SinglesClubJapan.info People doing this are also doing these things: Worth Doing learn spanish (again!) 51 out of 51 people (100%) think · Meet everyone in my FOAF. this is worth doing. • Shrink Texas. People who've done this: Entries Started yesterday. - 2 days ago I ran yesterday. Just a half hour on the treadmill, but still. Felt really good. I'll run again today. Yea!

squarepetal 59 entries WORTH DOING!

WORTH DOING!

Rintin35 21 entries

Markus Strohmaier

Constructing Goal Graphs from Search Query Logs

- Analyzing the tripartite graph of Search
 - Consisting of users, explicit intentional queries and tags

Any questions?

Thank you for your attention.