
This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0

Computer Games 2015

Game Development Basics

Dr. Mathias Lux

Klagenfurt University

Agenda

• Game Loop

• Sprites & 2.5D

• Images

Example: Space Ship

• Simple Game:

– A single space ship

– Moving left to right

• Advanced Tasks

– Firing rockets

– Explosions

– Sound & music

High Level Game Architecture

src. Mike McShaffry et al., Game Coding Complete, 3rd Edition

Game Application Layer

src. Mike McShaffry et al., Game Coding Complete, 3rd Edition

Game Logic

src. Mike McShaffry et al., Game Coding Complete, 3rd Edition

Game View (Human)

src. Mike McShaffry et al., Game Coding Complete, 3rd Edition

Game View (AI)

src. Mike McShaffry et al., Game Coding Complete, 3rd Edition

Game Loop

Update

Render

&

Paint

Sleep

Initialize Game

State
no

Exit?

yes

Start

End

Game Loop

• while(user doesn't exit)

– check for user input

– run AI

– move objects

– resolve collisions

– draw graphics

– play sounds

• end while

Check for user input

• Get state of keys

– e.g. is <space> key pressed

• initiate action

– e.g. spawn rocket

key polling vs

events.

Run AI

• Check current state

• Initiate action

– spawn UFOs,

– drop bombs,

– change paths etc.

Move Objects

• Move objects

– along their (changed) paths

– matching their (changed) velocity

Collision Detection

• Check if

– either there is a crossing in paths

– or a double setting of pixels

• Pixel based vs. boundary based

• Runtime issues

– Grid based, data structures etc.

Draw Graphics

• Direct engine

– to allocate resources

– to paint the buffer

– then flip the buffer

Play Sounds

• Decode sounds

– maintain storage

• Fill buffer

– to be played

• Trigger events

– explosions, sounds, etc.

Game Loop

• Frames per second

– 20 or more are minimum

– 60+ frames are optimum

– jitter is a problem (sync to display device)

• Stereoscopic 3D needs double frame rates

Game Loop

• Parallel processing

– Xbox has 3 cores (with HT)

– PS3, Xbox One & PS4 have 8 cores

– Mobile phones have 2+ cores

• Game loops run in parallel

– AI loop

– sound & painting loop

– control loop

Agenda

• Game Loop

• Sprites & 2.5D

• Images

Texture …

• What is a texture?

Sprites

• What is a sprite?

– A (moving) object on the screen

• Resources needed

– visuals, audio, state

• Loading and displaying

– game loop, effects, resources needed in time

Simple Sprite Animation

• Image strips …

– All possible animation frames in one image

– Cut it in initialization method

– Display the right one in each state

Texture Atlas

• Instead of having one image per sprite

Sample JSON Texture Atlas

{"frames": [

{

"filename": "query_00.jpg.png",

"frame": {"x":2,"y":1947,"w":622,"h":76},

"rotated": false,

"trimmed": true,

"spriteSourceSize": {"x":18,"y":89,"w":622,"h":76},

"sourceSize": {"w":640,"h":640}

},

{

"filename": "query_03.jpg.png",

"frame": {"x":1013,"y":1618,"w":276,"h":416},

"rotated": false,

"trimmed": true,

"spriteSourceSize": {"x":207,"y":106,"w":276,"h":416},

"sourceSize": {"w":640,"h":640}

},

{

"filename": "query_04.jpg.png",

"frame": {"x":735,"y":1387,"w":276,"h":628},

"rotated": false,

"trimmed": true,

"spriteSourceSize": {"x":44,"y":12,"w":276,"h":628},

"sourceSize": {"w":320,"h":640}

},

TexturePacker

• Supported in most common frameworks

– libGDX

– Phaser.io

– Cocos2d

– Unity

– ...

Features for the game

• Left-right movement

– spring based physics

– “feels more real”

Rocket

• Another sprite
– Only one allowed at a time

• Acceleration
– The longer it moves the faster it gets

• Removed if out of sight
– Sprite should be re-used (e.g. ammo)

– Too many sprites consume too much memory

• Simple sprite with 2-frame animation

Explosion

• Rocket explodes

– rocket is removed

– explosion sprite is displayed

• Animation with 9 different frames

– No alpha …

• Removed when over

Parallax Scrolling

• Common Technique for 2.5D

– In contrast to “real 3D”

• Simulates depth with multiple layers

– Each layer moves with different speed

• Side scrollers

– Games moving from left to right (Mario, etc.)

Parallax Scrolling

Source: http://en.wikipedia.org/wiki/Parallax_scrolling

Demo-Video

• California Games

Starfield Simulation

• Create 3 different layers

• Load them during startup

• Display them with wrap around

• Move them in different speeds

Starfield: Performance

• Performance issues with Java

– Translucent images are not rendered with
hardware acceleration.

– This has to be turned on explicitly on Windows

• Better: Draw stars yourself

More 2.5D Tricks

• Assume top-down view on landscape

– Draw shadow
• Use translucent color

• While scrolling move and scale shadow

• Creates illusion of uneven terrain

– Implement jump action of sprite:

• Move and scale shadow

• Scale sprite

Demo

Video: 1942

Image Tiles …

• Common technique to “create worlds”

• Add up small tiles to big picture

Image tiles …

Demo: Super Meat Boy

• https://youtu.be/fNNEPBs9R5s

https://youtu.be/fNNEPBs9R5s

Isometric Tiles

Isometric Tile Games

• Render back to front

– Support for sprites (trees, characters, etc.)

• Movement

– From tile to tile (animated?)

– World “moves”

Demo

• Diablo

– https://youtu.be/-L2pKRTxYJ4?t=3m18s

https://youtu.be/-L2pKRTxYJ4?t=3m18s

Agenda

• Game Loop

• Sprites & 2.5D

• Images

What is an image?

• Basically two types of images:

– Vector Image

– Raster Image

Sampling & Quantization

Vector Images

• Combination of
– Atomic elements and

– Operations

• Example:
– <circle fill="none" stroke="#000000"

cx="47.669" cy="47.669" r="41.5"/>

– <… transform=“matrix(0.24 0 0 0.24 0 0)”/>

• Rendering for presentation
– Conversion to raster image

Vector Images: Common

Formats

• Scalable Vector Graphics

– Standardized by W3C

– Supported by QT, Opera, Firefox, Adobe, …

– Support in Java by Apache Batik

• Windows Metafile

– Mostly office clipart

• Adobe Flash

Raster Images

• Defined by pixels
– In rows and columns (e.g. 320x240)
– Each one has a color value

• Storage Issues:
– Cp. screen pixels & image pixels
– Size of raw image

• 1024 * 768 * 16 = 12.582.912 ~> 1.5 MB
• Note that 32bit for color are more common -> ???
• HDMI: 8bit (v1.3 – 10, 12 & 16 bit)

Color

• Focus on RGB
– Quantifies red, green and blue parts

– So each pixel has a
• Red value

• Green value

• Blue value

• Examples:
– FF0000 (~ 16 Mio. colors, this one is red)

– EEEEEE (light grey)

Color: Alpha

• In addition the opacity can be quantified

– Additional channel: Alpha

• Example:

– FF0000FF (Red, but “invisible”)

– FF000099 (Red semitransparent)

Alpha: Examples

Image Files: Raw Data

• Uncompressed image data

– PPM, RAW, BMP

– Benefits:

• No (de)compression overhead

• No (de)compression routine needed
– Patents, additional code, licenses, etc.

– Drawbacks:

• File size: w*h*log2(#colors)

Image Files: Compressed

• Lossless compression

– PNG, TIFF are capable of lossless compression

– No information / quality loss

– All pixel values can be reconstructed

– Example: 12.4 kB (PNG) <-> 224 kB (BMP)

Image Files: Compressed

• Lossy compression

– JPEG is the most common

– Trade-off image quality and file size

– Typical information loss: Block artifacts

• Example: Note anti-aliasing and outer glow

JPG, Q:1, 1.5 KB JPG, Q:50, 5 KB PNG, 12 KB

Image Files: Compressed

• Reduction of color space

– PNG (indexed color), GIF (<=256 colors)

– Minimizes data per pixel

Format Choice for Games?

Need lots
of Colors?

Yes
Need

Alpha?

Yes PNG

No

PNG

BMP
No PNG

Format Choice for Games?

• Why not GIF?
– License issues, PNG does the same and is royalty

free.

• Why not JPG?
– Lossy compression is not needed in domains

where one can define graphics.

• Why not TIF?
– If we just need RGB, there is no need to use

anything beside PNG.

Images in Java

• Loading images

– Use javax.imageio.ImageIO.read(…)

– Supports PNG, GIF & JPG

– Returns a BufferedImage

• Creating images

– Use new BufferedImage(w,h,type)

– Use createGraphics() to draw

Image Effects

Java 2D provides extensive image

manipulation techniques:

• AffineTransformOp .. spatial transform

• ConvolveOp .. spatial filtering

• RescaleOp .. image scaling

AffineTransformOp

• Employs AffineTransform on image

– 3x3 matrix manually or provided ones:

• Scale

• Rotate

• Shear

• Translate

ConvolveOp

Spatial Filtering on arbitrary kernel

• What is spatial filtering?

– Numeric operation on each pixel in an image

• What does this mean?

– Take for instance a 3x3 matrix (Sobel)

3 4 0 3 3 3 4 0 3 3

1 0 -1 6 3 0 7 6 6 3 0 7 6

2 0 -2 2 7 2 2 2 2 7 9 2 2

1 0 -1 4 6 3 3 4 4 6 3 3 4

4 6 5 5 4 4 6 5 5 4

ConvolveOp

• What does this do?

– E.g. detect edges …

ConvolveOp

• Or blur images …

Gaussian Blur Filter

For instance with =1

Using Spatial Filtering:

Walkthrough …

• Task: Creating an Info Screen:

– Display Text

– Drop Shadow

How to drop shadow …

• Create a copy of your object

– Colorize it with your shadow color

– Move the copy a few pixels

– Draw and blur the copy

• Draw the actual object

Creating the Kernel ...

private static float[] blurKernel;

private static float sigma = 1.2f;

private static int kernelSize = 5;

static { // creating the blur kernel:

blurKernel = new float[kernelSize * kernelSize];

for (int i = 0; i < kernelSize; i++) {

for (int j = 0; j < kernelSize; j++) {

blurKernel[i+j* kernelSize] = (float)

(1/(2*Math.PI*sigma)*Math.exp(-

(i*i+j*j)/(2*sigma*sigma)));

}

}

}

Paint the shadow …

private void paintInfo(Graphics2D gra2) {

BufferedImage binfo = new BufferedImage(getWidth(), getHeight(),

BufferedImage.TYPE_INT_ARGB);

Graphics2D g2 = binfo.createGraphics();

Font myFont = Font.decode("Verdana").deriveFont(Font.BOLD, 22f);

g2.setFont(myFont);

infoStr = "Press 'S' to start.";

Rectangle2D bounds = g2.getFontMetrics().getStringBounds(infoStr, g2);

g2.setColor(Color.yellow);

g2.drawString(infoStr,

getWidth() / 2 - ((int) bounds.getWidth() / 2 - 4),

getHeight() / 2 - ((int) bounds.getHeight() / 2) + 4);

Blur the shadow and paint

the text …

// now blur:

ConvolveOp op = new ConvolveOp(new Kernel(kernelSize,

kernelSize, blurKernel));

gra2.drawImage(binfo, op, 0, 0);

gra2.setFont(myFont);

bounds = …getStringBounds(infoStr, gra2);

gra2.setColor(Color.blue.brighter());

gra2.drawString(infoStr,

getWidth() / 2 - ((int) bounds.getWidth() / 2),

getHeight() / 2 - ((int) bounds.getHeight() / 2));

}

Other options: PCG

• Procedural content generation

– Not designing but writing an algorithm for design

• Examples

– Fractals, Perlin Noise

"Karperien Strange Attractor 200" by Akarpe - Own work. Licensed under CC BY-SA 3.0 via Wikimedia Commons
http://commons.wikimedia.org/wiki/File:Karperien_Strange_Attractor_200.gif#/media/File:Karperien_Strange_Attractor_200.gif

"Perlin". Licensed under Public Domain via Wikipedia
http://en.wikipedia.org/wiki/File:Perlin.png#/media/File:Perlin.png

No Man‘s Sky

• Hello Games

– https://youtu.be/nmwG6Sj1Yfg

https://youtu.be/nmwG6Sj1Yfg

Vielen Dank …

… für die Aufmerksamkeit

