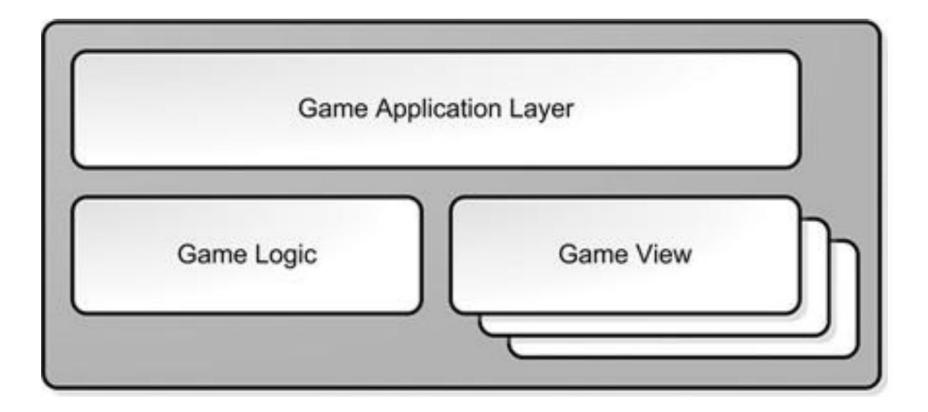


Computer Games 2014 Game Development Basics

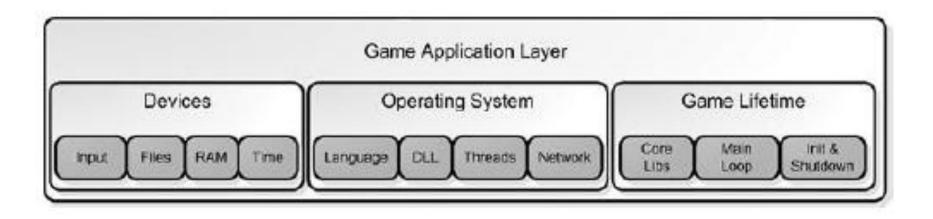
Dr. Mathias Lux Klagenfurt University

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0

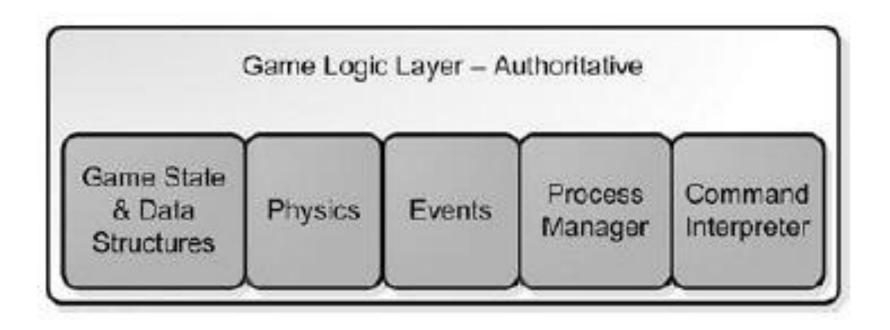
- Game Loop
- Sprites & 2.5D
- Images

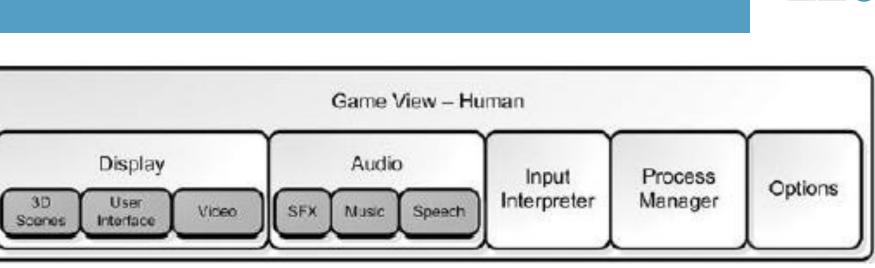

Example: Space Ship

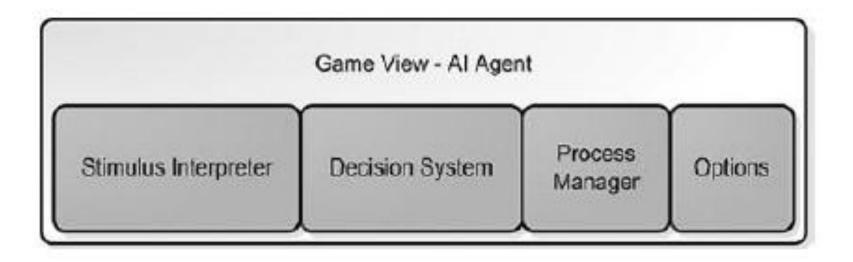
- Simple Game:
 - A single space ship
 - Moving left to right
- Advanced Tasks
 - Firing rockets
 - Explosions
 - Sound & music



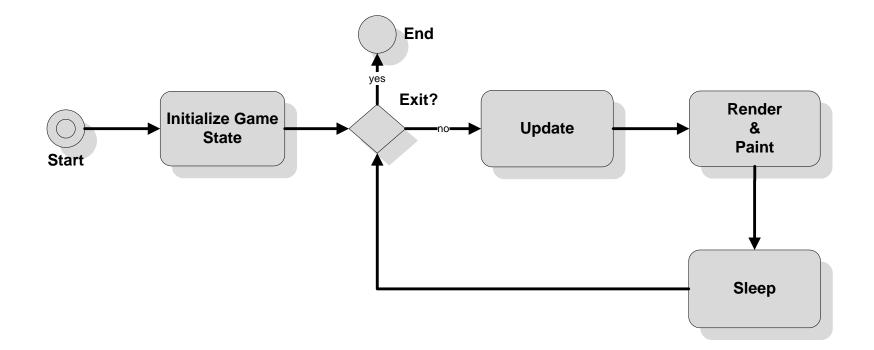
High Level Game Architecture


Game Application Layer


Game Logic


Game View (Human)

Game View (AI)



Game Loop

Game Loop

- while(user doesn't exit)
 - check for user input
 - run Al
 - move objects
 - resolve collisions
 - draw graphics
 - play sounds
- end while

Check for user input

- Get state of keys

 e.g. is <space> key pressed
- initiate action
 - e.g. spawn rocket

Run Al

- Check current state
- Initiate action
 - spawn UFOs,
 - drop bombs,
 - change paths etc.

Move Objects

- Move objects
 - along their (changed) paths
 - matching their (changed) velocity

Collision Detection

Check if

- either there is a crossing in paths
- or a double setting of pixels
- Pixel based vs. boundary based
- Runtime issues
 - Grid based, data structures etc.

Draw Graphics

- Direct engine
 - to allocate resources
 - to paint the buffer
 - then flip the buffer

Play Sounds

- Decode sounds
 maintain storage
- Fill buffer
 - to be played
- Trigger events
 - explosions, sounds, etc.

Game Loop

- Frames per second
 - 20 or more are minimum
 - 60+ frames are optimum
 - jitter is a problem (sync to display device)
- Stereoscopic 3D needs double frame rates

Game Loop

- Parallel processing
 - Xbox has 3 cores (with HT)
 - PS3 has 8 cores
- Game loops run in parallel
 - Al loop
 - sound & painting loop
 - control loop

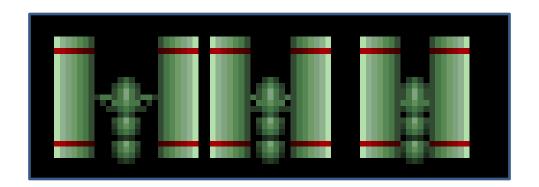
- Game Loop
- Sprites & 2.5D
- Images

Sprites

• What is a sprite?

- A (moving) object on the screen

Resources needed


- visuals, audio, state

- Loading and displaying
 - game loop, effects, resources needed in time

Simple Sprite Animation

- Image strips ...
 - All possible animation frames in one image
 - Cut it in initialization method
 - Display the right one in each state

Left-right movement

- spring based physics
- "feels more real"

Rocket

- Another sprite
 - Only one allowed at a time
- Acceleration
 - The longer it moves the faster it gets
- Removed if out of sight
 - Sprite should be re-used (e.g. ammo)
 - Too many sprites consume too much memory
- Simple sprite with 2-frame animation

Explosion

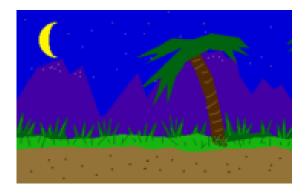
- Rocket explodes
 - rocket is removed
 - explosion sprite is displayed
- Animation with 9 different frames
 - No alpha ...
- Removed when over

• • • • • • •

Parallax Scrolling


- Common Technique for 2.5D


 In contrast to "real 3D"
- Simulates depth with multiple layers
 Each layer moves with different speed
- Side scrollers
 - Games moving from left to right (Mario, etc.)



Parallax Scrolling

Source: http://en.wikipedia.org/wiki/Parallax_scrolling

California Games

Starfield Simulation

- Create 3 different layers
- Load them during startup
- Display them with wrap around
- Move them in different speeds

Starfield: Performance

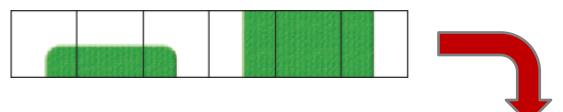
- Performance issues with Java
 - Translucent images are not rendered with hardware acceleration.
 - This has to be turned on explicitly on Windows

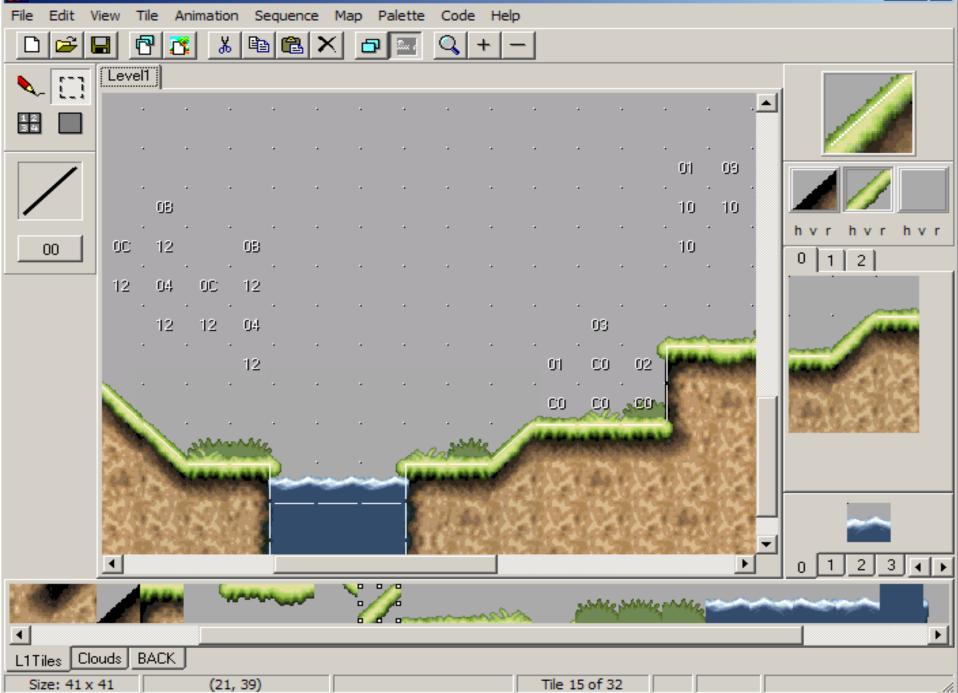
• Better: Draw stars yourself

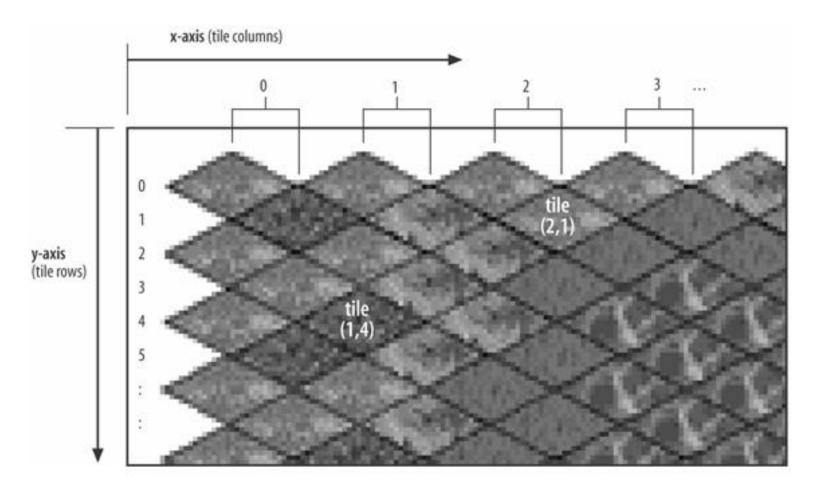
More 2.5D Tricks

- Assume top-down view on landscape
 - Draw shadow
 - Use translucent color
 - While scrolling move and scale shadow
 - Creates illusion of uneven terrain
 - Implement jump action of sprite:
 - Move and scale shadow
 - Scale sprite

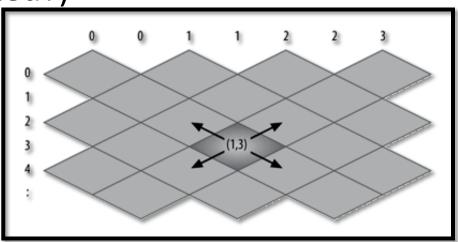
Demo


Video: 1942


- Common technique to "create worlds"
- Add up small tiles to big picture



Isometric Tiles



Isometric Tile Games

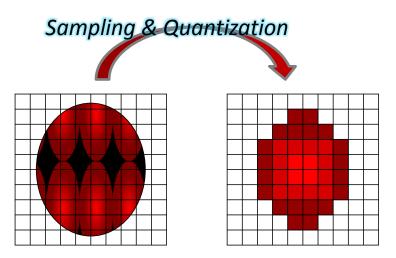
Render back to front

- Support for sprites (trees, characters, etc.)

- Movement
 - From tile to tile (animated?)
 - World "moves"

Demo

• Diablo



- Game Loop
- Sprites & 2.5D
- Images

What is an image?

- Basically two types of images:
 - Vector Image
 - Raster Image

Vector Images

- Combination of
 - Atomic elements and
 - Operations
- Example:
 - <circle fill="none" stroke="#000000" cx="47.669" cy="47.669" r="41.5"/>
 - <... transform="matrix(0.24 0 0 0.24 0 0)"/>
- Rendering for presentation

- Conversion to raster image

Vector Images: Common Formats

- Scalable Vector Graphics
 - Standardized by W3C
 - Supported by QT, Opera, Firefox, Adobe, ...
 - Support in Java by Apache Batik
- Windows Metafile
 - Mostly office clipart
- Adobe Flash

Raster Images

- Defined by pixels
 - In rows and columns (e.g. 320x240)
 - Each one has a color value
- Storage Issues:
 - Cp. screen pixels & image pixels
 - Size of raw image
 - 1024 * 768 * 16 = 12.582.912 ~> 1.5 MB
 - Note that 32bit for color are more common -> ???
 - HDMI: 8bit (v1.3 10, 12 & 16 bit)

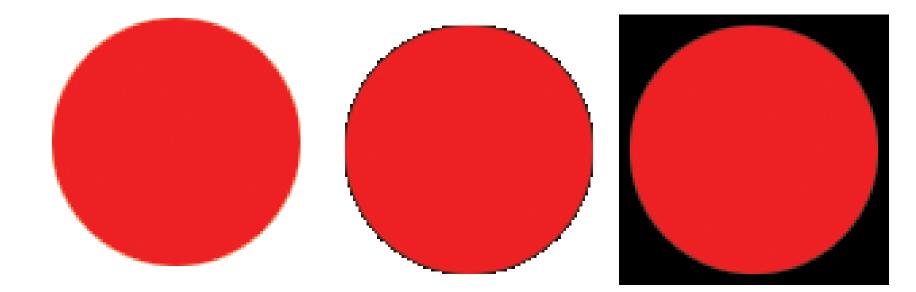
Color

Focus on RGB

- Quantifies red, green and blue parts
- So each pixel has a
 - Red value
 - Green value
 - Blue value

• Examples:

- FF0000 (~ 16 Mio. colors, this one is red)
- EEEEEE (light grey)


In addition the opacity can be quantified
 – Additional channel: Alpha

- Example:
 - FF0000FF (Red, but "invisible")
 - FF000099 (Red semitransparent)

Alpha: Examples

Image Files: Raw Data

- Uncompressed image data
 - PPM, RAW, BMP
 - Benefits:
 - No (de)compression overhead
 - No (de)compression routine needed
 - Patents, additional code, licenses, etc.
 - Drawbacks:
 - File size: w*h*log₂(#colors)

Image Files: Compressed

- Lossless compression
 - PNG, TIFF are capable of lossless compression
 - No information / quality loss
 - All pixel values can be reconstructed
 - Example: 12.4 kB (PNG) <-> 224 kB (BMP)

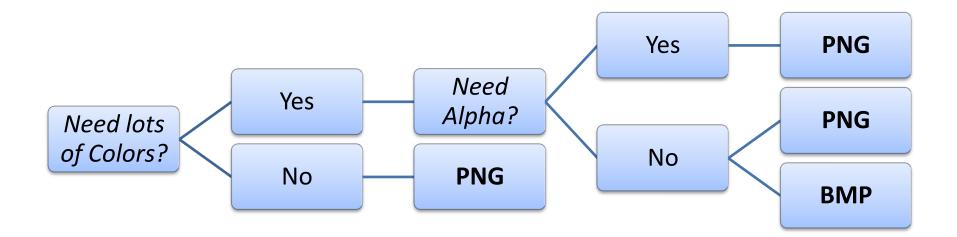
Image Files: Compressed

Lossy compression

- JPEG is the most common
- Trade-off image quality and file size
- Typical information loss: Block artifacts
- Example: Note anti-aliasing and outer glow

Image Files: Compressed

Reduction of color space


 PNG (indexed color), GIF (<=256 colors)
 Minimizes data per pixel

Format Choice for Games?

Format Choice for Games?

- Why not GIF?
 - License issues, PNG does the same and is royalty free.
- Why not JPG?
 - Lossy compression is not needed in domains where one can define graphics.
- Why not TIF?
 - If we just need RGB, there is no need to use anything beside PNG.

Images in Java

- Loading images
 - Use javax.imageio.ImageIO.read(...)
 - Supports PNG, GIF & JPG
 - Returns a BufferedImage
- Creating images
 - Use new BufferedImage(w,h,type)
 - Use createGraphics () to draw

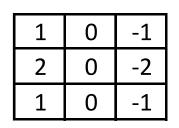
Image Effects

Java 2D provides extensive image manipulation techniques:

- AffineTransformOp .. spatial transform
- ConvolveOp .. spatial filtering
- RescaleOp .. image scaling

AffineTransformOp

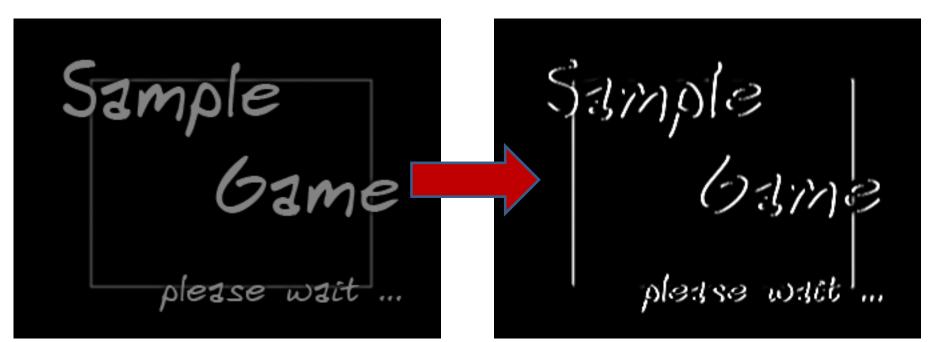
Employs AffineTransform on image


- 3x3 matrix manually or provided ones:
 - Scale
 - Rotate
 - Shear
 - Translate

ConvolveOp

Spatial Filtering on arbitrary kernel

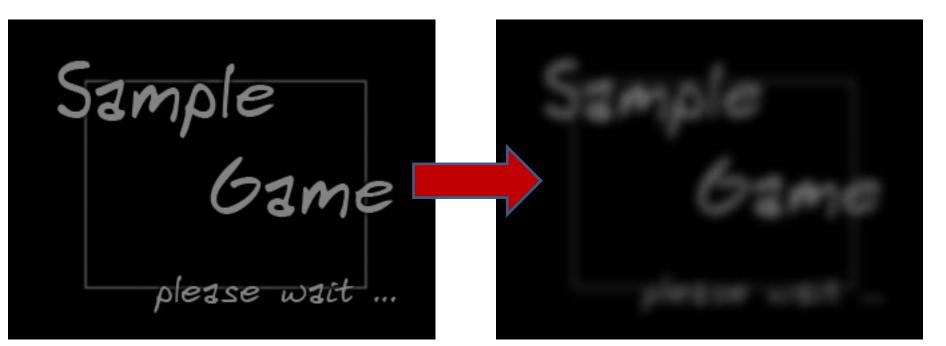
- What is spatial filtering?
 - Numeric operation on each pixel in an image
- What does this mean?
 - Take for instance a 3x3 matrix (Sobel)


3	4	0	3	3	
6	3	0	7	6	
2	7	<u>2</u>	2	2	
4	6	3	3	4	
4	6	5	5	4	

3	4	0	3	3
6	3	0	7	6
2	7	<u>9</u>	2	2
4	6	3	3	4
4	6	5	5	4

ConvolveOp

What does this do?
 – E.g. detect edges ...



ConvolveOp

• Or blur images ...

Gaussian Blur Filter

$$G(x,y) = rac{1}{2\pi\sigma^2} e^{-rac{x^2+y^2}{2\sigma^2}}$$

For instance with $\Box = 1$

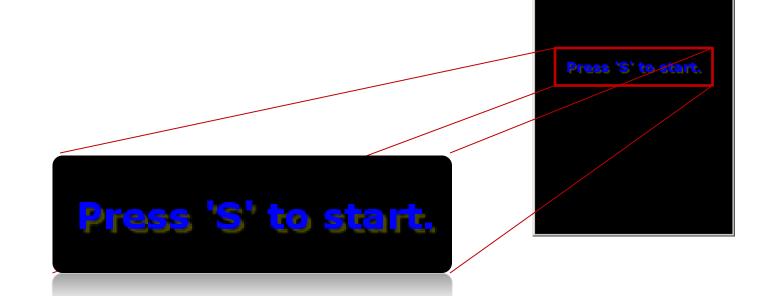
<u>1</u> 273

1 '

4

-	4	16	26	16	4
	7	26	41	26	7
	4	16	26	16	4
	1	4	7	4	1

7


4

1

Using Spatial Filtering: Walkthrough ...

- Task: Creating an Info Screen:
 - Display Text
 - Drop Shadow


🙆 Sample Game

_ 🗆 ×

How to drop shadow ...

- Create a copy of your object
 - Colorize it with your shadow color
 - Move the copy a few pixels
 - Draw and blur the copy
- Draw the actual object

Creating the Kernel ...

```
private static float[] blurKernel;
private static float sigma = 1.2f;
private static int kernelSize = 5;
static { // creating the blur kernel:
   blurKernel = new float[kernelSize * kernelSize];
   for (int i = 0; i < kernelSize; i++) {</pre>
        for (int j = 0; j < kernelSize; j++) {</pre>
             blurKernel[i+j* kernelSize] = (float)
                (1/(2*Math.PI*sigma)*Math.exp(-
                (i*i+j*j)/(2*sigma*sigma)));
        }
   }
```


Paint the shadow ...


```
getHeight() / 2 - ((int) bounds.getHeight() / 2) + 4);
```


Blur the shadow and paint the text ...

// now blur:

```
ConvolveOp op = new ConvolveOp(new Kernel(kernelSize,
kernelSize, blurKernel));
```

```
gra2.drawImage(binfo, op, 0, 0);
```

```
gra2.setFont(myFont);
```

```
bounds = ...getStringBounds(infoStr, gra2);
```

```
gra2.setColor(Color.blue.brighter());
```

```
gra2.drawString(infoStr,
    getWidth() / 2 - ((int) bounds.getWidth() / 2),
    getHeight() / 2 - ((int) bounds.getHeight() / 2));
```


}

... für die Aufmerksamkeit

