
 This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0

Computer Games 2011

Game Development Basics

Dr. Mathias Lux

Klagenfurt University

Agenda

• Game Loop

• Sprites & 2.5D

• Images

Example: Space Ship

• Simple Game:

– A single space ship

– Moving left to right

• Advanced Tasks

– Firing rockets

– Explosions

– Sound & music

Game Loop

Update

Render

&

Paint

Sleep

Initialize Game

State
no

Exit?

yes

Start

End

Game Loop

• while(user doesn't exit)

– check for user input

– run AI

– move objects

– resolve collisions

– draw graphics

– play sounds

• end while

Check for user input

• Get state of keys

– e.g. is <space> key pressed

• initiate action

– e.g. spawn rocket

Run AI

• Check current state

• Initiate action

– spawn UFOs,

– drop bombs,

– change paths etc.

Move Objects

• Move objects

– along their (changed) paths

– matching their (changed) velocity

Collision Detection

• Check if

– either there is a crossing in paths

– or a double setting of pixels

• Pixel based vs. boundary based

• Runtime issues

– Grid based, data structures etc.

Draw Graphics

• Direct engine

– to allocate resources

– to paint the buffer

– then flip the buffer

Play Sounds

• Decode sounds

– maintain storage

• Fill buffer

– to be played

• Trigger events

– explosions, sounds, etc.

Game Loop

• Frames per second

– 20 or more are minimum

– 60+ frames are optimum

– jitter is a problem (sync to display device)

• Stereoscopic 3D needs double frame rates

Game Loop

• Parallel processing

– Xbox has 3 cores (with HT)

– PS3 has 8 cores

• Game loops run in parallel

– AI loop

– sound & painting loop

– control loop

Agenda

• Game Loop

• Sprites & 2.5D

• Game Engines

Sprites

• What is a sprite?

– A (moving) object on the screen

• Resources needed

– visuals, audio, state

• Loading and displaying

– game loop, effects, resources needed in time

Simple Sprite Animation

• Image strips …

– All possible animation frames in one image

– Cut it in initialization method

– Display the right one in each state

Features

• Left-right movement

– spring based physics

– “feels more real”

Rocket

• Another sprite
– Only one allowed at a time

• Acceleration
– The longer it moves the faster it gets

• Removed if out of sight
– Sprite should be re-used (e.g. ammo)

– Too many sprites consume too much memory

• Simple sprite with 2-frame animation

Explosion

• Rocket explodes

– rocket is removed

– explosion sprite is displayed

• Animation with 9 different frames

– No alpha …

• Removed when over

Parallax Scrolling

• Common Technique for 2.5D

– In contrast to “real 3D”

• Simulates depth with multiple layers

– Each layer moves with different speed

• Side scrollers

– Games moving from left to right (Mario, etc.)

Parallax Scrolling

Source: http://en.wikipedia.org/wiki/Parallax_scrolling

Demo-Video

• California Games

Starfield Simulation

• Create 3 different layers

• Load them during startup

• Display them with wrap around

• Move them in different speeds

Starfield: Performance

• Performance issues with Java

– Translucent images are not rendered with
hardware acceleration.

– This has to be turned on explicitly on Windows

• Better: Draw stars yourself

More 2.5D Tricks

• Assume top-down view on landscape

– Draw shadow
• Use translucent color

• While scrolling move and scale shadow

• Creates illusion of uneven terrain

– Implement jump action of sprite:

• Move and scale shadow

• Scale sprite

Demo

 Video: 1942

Image Tiles …

• Common technique to “create worlds”

• Add up small tiles to big picture

Image tiles …

Isometric Tiles

Isometric Tile Games

• Render back to front

– Support for sprites (trees, characters, etc.)

• Movement

– From tile to tile (animated?)

– World “moves”

Demo

• Diablo

Agenda

• Game Loop

• Sprites & 2.5D

• Images

What is an image?

• Basically two types of images:

– Vector Image

– Raster Image

Sampling & Quantization

Vector Images

• Combination of
– Atomic elements and

– Operations

• Example:
– <circle fill="none" stroke="#000000"

 cx="47.669" cy="47.669" r="41.5"/>

– <… transform=“matrix(0.24 0 0 0.24 0 0)”/>

• Rendering for presentation
– Conversion to raster image

Vector Images: Common

Formats

• Scalable Vector Graphics

– Standardized by W3C

– Supported by QT, Opera, Firefox, Adobe, …

– Support in Java by Apache Batik

• Windows Metafile

– Mostly office clipart

• Adobe Flash

Raster Images

• Defined by pixels
– In rows and columns (e.g. 320x240)
– Each one has a color value

• Storage Issues:
– Cp. screen pixels & image pixels
– Size of raw image

• 1024 * 768 * 16 = 12.582.912 ~> 1.5 MB
• Note that 32bit for color are more common -> ???
• HDMI: 8bit (v1.3 – 10, 12 & 16 bit)

Color

• Focus on RGB
– Quantifies red, green and blue parts

– So each pixel has a
• Red value

• Green value

• Blue value

• Examples:
– FF0000 (~ 16 Mio. colors, this one is red)

– EEEEEE (light grey)

Color: Alpha

• In addition the opacity can be quantified

– Additional channel: Alpha

• Example:

– FF0000FF (Red, but “invisible”)

– FF000099 (Red semitransparent)

Alpha: Examples

Image Files: Raw Data

• Uncompressed image data

– PPM, RAW, BMP

– Benefits:

• No (de)compression overhead

• No (de)compression routine needed
– Patents, additional code, licenses, etc.

– Drawbacks:

• File size: w*h*log2(#colors)

Image Files: Compressed

• Lossless compression

– PNG, TIFF are capable of lossless compression

– No information / quality loss

– All pixel values can be reconstructed

– Example: 12.4 kB (PNG) <-> 224 kB (BMP)

Image Files: Compressed

• Lossy compression

– JPEG is the most common

– Trade-off image quality and file size

– Typical information loss: Block artifacts

• Example: Note anti-aliasing and outer glow

JPG, Q:1, 1.5 KB JPG, Q:50, 5 KB PNG, 12 KB

Image Files: Compressed

• Reduction of color space

– PNG (indexed color), GIF (<=256 colors)

– Minimizes data per pixel

Format Choice for Games?

Need lots
of Colors?

Yes
Need

Alpha?

Yes PNG

No

PNG

BMP
No PNG

Format Choice for Games?

• Why not GIF?
– License issues, PNG does the same and is royalty

free.

• Why not JPG?
– Lossy compression is not needed in domains

where one can define graphics.

• Why not TIF?
– If we just need RGB, there is no need to use

anything beside PNG.

Images in Java

• Loading images

– Use javax.imageio.ImageIO.read(…)

– Supports PNG, GIF & JPG

– Returns a BufferedImage

• Creating images

– Use new BufferedImage(w,h,type)

– Use createGraphics() to draw

Image Effects

Java 2D provides extensive image

manipulation techniques:

• AffineTransformOp .. spatial transform

• ConvolveOp .. spatial filtering

• RescaleOp .. image scaling

AffineTransformOp

• Employs AffineTransform on image

– 3x3 matrix manually or provided ones:

• Scale

• Rotate

• Shear

• Translate

ConvolveOp

Spatial Filtering on arbitrary kernel

• What is spatial filtering?

– Numeric operation on each pixel in an image

• What does this mean?

– Take for instance a 3x3 matrix (Sobel)

3 4 0 3 3 3 4 0 3 3

1 0 -1 6 3 0 7 6 6 3 0 7 6

2 0 -2 2 7 2 2 2 2 7 9 2 2

1 0 -1 4 6 3 3 4 4 6 3 3 4

4 6 5 5 4 4 6 5 5 4

ConvolveOp

• What does this do?

– E.g. detect edges …

ConvolveOp

• Or blur images …

Gaussian Blur Filter

For instance with =1

Using Spatial Filtering:

Walkthrough …

• Task: Creating an Info Screen:

– Display Text

– Drop Shadow

How to drop shadow …

• Create a copy of your object

– Colorize it with your shadow color

– Move the copy a few pixels

– Draw and blur the copy

• Draw the actual object

Creating the Kernel ...

private static float[] blurKernel;

private static float sigma = 1.2f;

private static int kernelSize = 5;

static { // creating the blur kernel:

 blurKernel = new float[kernelSize * kernelSize];

 for (int i = 0; i < kernelSize; i++) {

 for (int j = 0; j < kernelSize; j++) {

 blurKernel[i+j* kernelSize] = (float)

 (1/(2*Math.PI*sigma)*Math.exp(-

 (i*i+j*j)/(2*sigma*sigma)));

 }

 }

}

Paint the shadow …

private void paintInfo(Graphics2D gra2) {

 BufferedImage binfo = new BufferedImage(getWidth(), getHeight(),

 BufferedImage.TYPE_INT_ARGB);

 Graphics2D g2 = binfo.createGraphics();

 Font myFont = Font.decode("Verdana").deriveFont(Font.BOLD, 22f);

 g2.setFont(myFont);

 infoStr = "Press 'S' to start.";

 Rectangle2D bounds = g2.getFontMetrics().getStringBounds(infoStr, g2);

 g2.setColor(Color.yellow);

 g2.drawString(infoStr,

 getWidth() / 2 - ((int) bounds.getWidth() / 2 - 4),

 getHeight() / 2 - ((int) bounds.getHeight() / 2) + 4);

Blur the shadow and paint

the text …

 // now blur:

 ConvolveOp op = new ConvolveOp(new Kernel(kernelSize,

 kernelSize, blurKernel));

 gra2.drawImage(binfo, op, 0, 0);

 gra2.setFont(myFont);

 bounds = …getStringBounds(infoStr, gra2);

 gra2.setColor(Color.blue.brighter());

 gra2.drawString(infoStr,

 getWidth() / 2 - ((int) bounds.getWidth() / 2),

 getHeight() / 2 - ((int) bounds.getHeight() / 2));

}

Vielen Dank …

… für die Aufmerksamkeit

