
VK Computer Games

Mathias Lux & Horst Pichler
Universität Klagenfurt

This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 2.0 License. See http://creativecommons.org/licenses/by-nc-sa/2.0/at/

http://www.uni-klu.ac.at

2

AI in Games

 Game-AI must
•  ... mimick intelligence
•  ... add to the gaming experience
•  ... raise the level of challenge

 Intelligent behaviour
•  movement of bots (enemies, NPCs)
•  combat tactics and planning
•  interaction with the player

–  communication
–  trade
–  diplomacy

•  etc.

http://www.uni-klu.ac.at

3

A very short History
 In the good old times

•  enemy „intelligence“ follows fixed patterns (e.g., boss fights)

 In the 1990s (more processing power available)
•  complex pathfinding problems
•  planning & tactics
•  incomplete information algorithms („fog of war“)

 In the 2000s
•  machine learning algorithms (e.g., neural networks)
•  „emergent behavior“ (cmp.: game of life)

–  study and design of complex/multi-agent systems
–  swarm-intelligence (flocking of birds)

 enemies without „cheating“ AI

 Fog of War – Warcraft II [http://www.youtube.com/watch?v=OsLGvm5-29w]

http://www.uni-klu.ac.at

4

Some Basic Rules I
 Only the player‘s impression counts

•  even sophisticated algorithms may produce behaviour
 patterns, that create the impression of silly, random, or
 annoying behaviour

•  AI which goes unrecognized is dispensable
•  too smart AI or usage of complete information algorithms

 (cheating AI, godlike powers) results in player demotivation

 Realistic AI is usually complex and expensive (CPU)
•  fake intelligence whenever possible
•  it is eventually not necessary to implement a goal-regression

 planner if the possible sequences of actions to achieve a
 certain goal are limited

• 
Line of Sight – Commandos 3 [http://www.youtube.com/watch?v=4CLp3D5h6RU&feature=related]

http://www.uni-klu.ac.at

5

Some Basic Rules II

 IQ must suite the enemy type
•  an enemy-maintenance robot that moves randomly might still

 appear realistic
•  an assasin should avoid the player‘s line of sight and try to

 sneak up from behind

 Modify intelligence
•  predictable bots are boring (unless it is an essential part of

 the game)
•  raise the level of intelligence corresponding to the player‘s

 learning curve and/or increasing levels

Line of Sight – Commandos 3 [http://www.youtube.com/watch?v=4CLp3D5h6RU&feature=related]

http://www.uni-klu.ac.at

6

Example: Ghosts in Pacman

●  Each ghost has a specific „attack“ patterns
 Clyde – stupid, moves completely randomly
 Inky – random movement, starts chasing when close
 Pinky – ambushes (roundabout)
 Blinky – chases the player

●  Looks simple ...
 ... but the designer put a lot of thought into behaviour

 patterns, which made the game an instant classic

 Pacman [http://www.youtube.com/watch?v=OsLGvm5-29w]

http://www.uni-klu.ac.at

7

Basic Ghost Modes

 Pursuit / „Attack“
•  ghosts move according to their „attack“ patterns

 Scatter
•  ghosts head for their home corners (for 5 to 7 seconds)
•  triggered by a timer
•  ghosts scatter up to four times per life/level
•  „it seemed to be more natural than constant attack“

(Toru Iwatani, creator of Pacman)

 „Blue“ mode
•  when Pacman eats a power pill
•  ghosts move slower with different movement patterns

http://www.uni-klu.ac.at

8

Red Ghost: Blinky / Shadow

 Blinky begins each level moving at the same speed
 as all of the other ghosts, but after you've eaten a
 certain number of dots, he begins to speed up (he
 takes on the identity of 'Cruise Elroy‘).
 
 Blinky becomes Cruise Elroy earlier and earlier as

 you progress to higher and higher levels [...].

 Unlike the other ghosts, Blinky will also tend to follow
 close on your tail even when you turn and will often
 still chase you even in scatter mode.

http://www.masswerk.at/JavaPac/pacman-howto.html

http://www.uni-klu.ac.at

9

Pink Ghost: Pinky / Speedy

 Pinky seems to have a tendency to go around blocks
 in an anticlockwise direction unlike Blinky and Clyde
 who seem to prefer going clockwise.
 
 This means that if Blinky and Pinky reach the

 opposite side of a block to where you are, they'll
 come at you from opposite sides of it. They can often
 trap you like this so be careful of this deadly duo.

http://www.uni-klu.ac.at

10

Blue Ghost: Inky / Bashful

 Inky is dangerous because he's unpredictable.

 Given the same choices, he will often take different
 turns at different times.
 
 There might be rhyme and reason to his behaviour,

 but we haven't recognised it yet.
•  One theory is that Inky's behaviour depends on his proximity

 to Blinky almost as if he is too afraid to act on his own (like
 some people who never go to a cinema by themselves).

•  Another unconfirmed theory about Inky is that he will often
 turn off if Pac-Man charges him.

http://www.uni-klu.ac.at

11

Yellow Ghost: Clyde / Pokey

 Clyde is either short-sighted or stupid.

 He will often turn off rather than approach you. His
 heart doesn't seem to be in it at all.

 A consequence of Clyde's unwillingness to take part
 is that it's often hard to round all of the ghosts up into
 a single cluster which is nice to do just before eating
 a power pill.

http://www.uni-klu.ac.at

12

Creating an Ilusion of
 Intelligence

●  Seeing

●  Hearing

●  Reacting

http://www.uni-klu.ac.at

13

The Line of Sight I
 Vision ray

•  draw a line (or a rectangle)
between objects (evtl. limited len)

•  find all obstacles that intersect
with this line (collision detect.)

•  no problem for tile-based levels
–  use bounding boxes

•  in this example:
–  either: invisible bounding

polygons that represent obstacles
–  or: invisible monochrome bitmap (0 empty, 1 obstacle)

and check bits along the line (decrease granularity if necessary)
•  problem: bots have eyes in the back of their heads (no blind spots)

http://www.uni-klu.ac.at

14

The Line of Sight II

 Vision cone (simple variant)
•  create a triangle (polygon) with

given „viewing“ angle
•  rotate triangle into viewing

direction of bot
•  check if object collides with the

triangle (intersect)
•  if intersects:

–  check with multiple rays
(optimized: only between tangent intersection points)

•  alternative: only multiple rays (no triangle)

http://www.uni-klu.ac.at

15

„Audio Circles“
 Noise and listening circles

•  if the player does something that
makes noise (shoot, reload, ...)

–  create a „noise“-circle
–  the louder the noise the

greater the radius
•  create „listening“-circles for bots

–  the better a bot hears the
greater the circle

•  collision check between noise and listening circles

 Possible cases
•  accurate hearing: now the bot knows player‘s position
•  inaccurate hearing: the bot aproximates the direction to the player‘s

 position (somewhere between the intersection points; randomized)

http://www.uni-klu.ac.at

16

Reaction

 Bot must react according to situation and strategy
•  chase, attack, flee, hide, power up, etc.

 Use finite state machine to implement reaction

Patrol Chase
(for some time)

http://www.uni-klu.ac.at

17

Making Decisions

 Making a decision results in a state change
•  triggered by interaction with player (seeing, hearing, ...)
•  triggered by game world (e.g., bot spots a power-up)
•  triggered by status (e.g., low health results in evasive behav.)
•  triggered without obvious reason (cmp. ghosts)

–  e.g., change between wait, run, walk, patrol, ...

 Do not change the state too fast
•  „tweak“ your game until it feels right

 Use random functions
•  apply probabilities for state changes, such that certain states

 are more or less frequent

http://www.uni-klu.ac.at

18

Some Behaviour Patterns

●  Dodge and Flee

Zigzag Duck&RandomMove Hide Flee

http://www.uni-klu.ac.at

19

Some Behaviour Patterns

●  Attack

Rush Strafe Sneak

move along a circle,
ellipse, hexagon, octagon, ...

http://www.uni-klu.ac.at

20

Some Behaviour Patterns

●  Aim and Fire
 to consider: time between aiming and firing!

Direct Random Predictive

- Aiming-patterns can also be used for chasing
- Chasing may come with other changes: acceleration, rotation of turret, etc.

http://www.uni-klu.ac.at

21

Pathfinding

 Find (good) path between between start and goal
 Basic idea:

•  assume Pinky wants to move
towards Pacman

•  it has 3 possibilities: up, down,
or right (white circles)

•  calculate Manhattan distance
between player position and each
of these 3 fields

–  up:5 (fields, tiles)
–  right: 6
–  down: 3

•  decision: move down!

http://www.uni-klu.ac.at

22

Pathfinding with A*

Images taken from Pathfinding for Beginners [http://www.policyalmanac.org/games/aStarTutorial.htm]

●  Given
  terrain
  starting position
  goal position

●  Find shortest path
  span tree

•  calculate new position according to possible movement
•  calculate f = g + h

–  g … cost from starting position (covered distance)
–  h … heuristic: estimated distance to goal

•  span tree from new position
•  stop

–  if shortest path found
–  depth or time limit reached

  Move to first position on calculated shortest path

●  Admissibility Theorem
  h must be less or equal to the real rest-distance!
  for our example: h calculated by the manhattan distance

http://www.uni-klu.ac.at

23

Pathfinding with A*

http://www.uni-klu.ac.at

24

Pathfinding with A*

Movement cost:
horizontal 10
vertical 10
diagonal 14

http://www.uni-klu.ac.at

25

Pathfinding with A*

http://www.uni-klu.ac.at

26

Pathfinding with A*

http://www.uni-klu.ac.at

27

Pathfinding with A*

http://www.uni-klu.ac.at

28

A* Performance

 Performance problem
•  for many bots and/or huge search spaces A* might slow down the

 game

 Performance improvement
•  recalculate only if goal-position changes
•  do not recalculate to often (apply wrong direction for some time)
•  limit search time (if not finished: choose currently best direction)
•  if reusable: store and reuse search results
•  divide search (solve subgoals)

–  use build time information (graph with selected locations onthe
 map)

–  if it is known that for path from A to Z, one must pass O, then
 calculate A to O first

http://www.uni-klu.ac.at

29

Some Thoughts on Tactial AI

●  Rational movement
 avoid cones of fire
 do not move in „lines of sight“
 seek cover: move to cover locations

●  Choke point analysis
 choke-point = points where a player must go through
 use navigation graph to find choke points

•  graph expresses connections between „rooms“
 and „corridors“

 go to choke points
 wait for player, prepare, and ambush

http://www.uni-klu.ac.at

30

Some Thoughts on Tactial AI

●  Choke points

http://www.uni-klu.ac.at

31

Some thoughts on Tactial AI

●  Influence Maps
 dominance of teams per area
 needed for tactical reasoning

http://www.uni-klu.ac.at

32

Some thoughts on Tactial AI

●  Commander AI
 know goals

•  conquer point A, destroy Player X, ...
 update and assess current situation

•  enemy unit types, area domination, no. units available,
 required resources, unknown areas, ...

 select (pre-defined) tactics
•  e.g., scout/gather/construct, „tank-rush“ (in C&C)

 planning
•  determine necessary actions (to achieve the goal)

 perform actions
•  send scouts, produce needed units, command units to hot

 spots/choke points/under-dominated areas, ...
 etc.

http://www.uni-klu.ac.at

33

Further AI Algorithms

 Planning Algorithms
•  find a sequence of actions to achieve a goal

–  example: monkey and banana
–  see Means Ends Analysis
–  see Goal Regression Planning

 Constraint Satisfaction
•  find a solution (assignment of variables) within given

 constraints
–  example: solve a Sudoku
–  see Constraint Satisfaction Problem

http://www.uni-klu.ac.at

34

Further AI Algorithms

 Learning
•  adapt behaviour based on prior experience

–  example: best reaction on typical player movement
–  see Learning with decision trees

 Game Playing
•  find best next move

–  example: turn-based two player board games
–  see Min-Max Search
–  see Alpha-Beta Search

