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OUTLINE

 Multiplayers Games (MG)

 Why multiplayer?

 Which types of MGs exist?

 How to program network-based MG

 Example project with demonstrations
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MULTIPLAYER GAMES

 Why Multiplayer Games?

 Humans are better at most strategy than current Ais

 Humans are less predictable

 Can play with people, communicate in natural

language

 Add social aspect to computer games

 Provide larger environments to play in, with more

characters

 Make money as a professional game player
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TYPES OF MULTIPLAYER GAMES

 Turn-based

 Fully distributed

 (Split)/Shared-Screen

 Small group multiplayer games

 Massive Multiplayer Online Games (MMOGs)
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TURN-BASED MULTIPLAYER GAMES

+ Easy to implement

No real fun since players need to wait for their

turn
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Battle Chess (1988) Whirlwind Snooker (1991)
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SPLIT-SCREEN AND SHARED-SCREEN

MULTIPLAYER

+ No latency issues, simple and even funny

Scalability, physical location
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Mario Kart Double Dash (split-screen, 2003)
Battle Squadron (shared-screen, 1992)
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SMALL GROUP MULTIPLAYER GAMES

 Ad-hoc, short-lived sessions

 Any client can be server

 Typically limited 

number of players

 E.g.

 Shooters

 RTS

 Racing

Klaus Schöffmann DS 2008 7

Counter Strike (1999)
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MASSIVE MULTIPLAYER ONLINE GAMES

(MMOGS)
 Persistent

 World state

 (Character state)

 Thousands of simultaneous players

 Most MMOGs are Massive Multiplayer Online 

Role Playing Games (MMORPGs)
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MMORPGS

 Ultima Online (1997)

 Isometric view

 3 years development

 1998: > 100,000 players

 2003: 225,000 players
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MMORPGS

 World of Warcraft (2004)

 Dec 2005:  5 million players

 Dec 2006: 8.3 million players

 Nov 2007: 9.3 million players

 Jan 2008:  10 million players

 2.5 million in North America

 2 million in Europe

 5.5 million in Asia
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NETWORK ARCHITECTURE

FOR MULTIPLAYER GAMES
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ARCHITECTURES

 Client-Server

 Peer-to-Peer

 Hybrid
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CLIENT-SERVER
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CLIENT-SERVER

 Server handles all important decisions

 Server computes game state only

 Game state is broadcasted to all clients (e.g. every 10ms)

 Every event (even local) must go through server

+ Conceptually simple

+ Easy to implement (e.g. collision detection)

+ Harder to cheat

Server becomes a bottleneck

Bad response/reaction time (even of local player)
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CLIENT-SERVER

Server‘s main loop Client‘s main loop
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PEER-TO-PEER
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PEER-TO-PEER

 Every client computes its own state locally

 Own game state is reported to others

  Load is spread among all players

 Works better if local state prediction (and compensation) of other

players is used

+ Lower latency (one-way-delay)

+ Better response/reaction time (particularly with prediction)

+ No single point of failure

Game state synchronization is more difficult (e.g. collision detection)

Can be easily cheated
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PEER-TO-PEER

Client‘s main loop
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Can be easily

chated!

How to cheat:

1) Ignore incoming hit message

2) Tell others they are hit, although they

aren‘t

3) Move player at arbitrary speed

4) Infinite ammo, armor, ….
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HYBRID

Klaus Schöffmann DS 2008 19

(    )



Institute of Information Technology

Distributed Multimedia Systems 

HYBRID

 Combining Client-Server with P2P approach

 Load distribution

 Better responsiveness

 Local computation of own state

 Report state through server (harder to cheat!)

 Severy may compute game state as well

 E.g. used for collision detection

 Mostly used in practice

 Typically with client-side prediction of game state and

game state compensation
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FURTHER ASPECTS

 Many other issues…

 Different performance/latency of participating machines

 Measure latency and consider it in state prediction too

 Randomness

 Avoid cheating

 Why? Because otherwise no one would play the game!

 Design your own protocol (typically based on UDP)

 Own sequencing, retransmission of important packets, etc.

 Implement many other components

 Lobby, Copy protection, Updating, …
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TYPICAL LATENCY REQUIREMENTS

 RTS

 250 ms not noticable

 250-500 ms playable

 > 500 ms noticeable

 FPS

 < 150 ms preferred

 Car racing

 < 100 ms preferred
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EXAMPLE PROJECT

Klaus Schöffmann DS 2008 23



Institute of Information Technology

Distributed Multimedia Systems 

EXAMPLE PROJECT (RMI BASED)

 Objects moving in a rectangular area

 Can be rotated

 Can accelerate and brake

 Can fire a cannon (ball up

to 3 times reflected by a wall)

 More a demo than a real game

 No collision detection

 No one can win the game 

 Single player version

 430 LOC (with comments)

 Last multiplayer version

 620 LOC (with comments)
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EXAMPLE PROJECT – GAME STATE
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EXAMPLE PROJECT – INPUTS
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EXAMPLE PROJECT – GAME LOOP
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EXAMPLE PROJECT – GAME LOOP
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MULTIPLAYER V1

 Client-Server architecture

 Game state simulation is performed on server

 gameUpdate()

 run()

 Input events are sent to server

(and processed on server)

 Server periodically broadcasts state of all 

players to all players

  „dumb“ clients
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MULTIPLAYER V1

 Server Interface (RMI)

 Client Interface (RMI)
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State of all players
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MULTIPLAYER V1

Klaus Schöffmann DS 2008 31



Institute of Information Technology

Distributed Multimedia Systems 

MULTIPLAYER V1

 Problems?

 Even local animation might be slow

 Demonstration
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MULTIPLAYER V2

 Hybrid architecture

 Naive approach:

 Send input events through server to all clients

 Game state simulation is performed locally

(on every client)

  „dumb“ server
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MULTIPLAYER V2

 Server Interface (RMI)

 Client Interface (RMI)
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MULTIPLAYER V2 - CLIENT
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MULTIPLAYER V2 - SERVER
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MULTIPLAYER V2

 Server performs no game state simulation

 Just input events are stored and broadcasted

 Problems ?

 Will finally result in different simulations due to

different network delays to the server

(and different speed of machines)

 Demonstration
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MULTIPLAYER V3

 Hybrid architecture

 Every client performs game state simulation

 Own state is broadcasted to other players

(via server)

 A kind of („very simple“) game state prediction

 However, no compensation
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MULTIPLAYER V3

 Server

 Client
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State of one player
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MULTIPLAYER V3 - CLIENT
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MULTIPLAYER V3 - SERVER
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MULTIPLAYER V3 - CLIENT
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Just overwrite state

(no compensation)
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MULTIPLAYER V3

 Still problems?

 Yes: collision detection

 Solution

 Perform game state simulation on server as well

 Use game state on server for collision detection and

inform clients

 Demonstration
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MORE RESOURCES

 Introduction to Multiplayer Game Programming

http://trac.bookofhook.com/bookofhook/trac.cgi/wiki/IntroductionTo

MultiplayerGameProgramming

 Unreal Networking Architecture

http://unreal.epicgames.com/Network.htm

 The Quake3 Networking Model

http://trac.bookofhook.com/bookofhook/trac.cgi/wiki/Quake3Networ

king

 Latency Compensating Methods in Client/Server In-game Protocol 

Design and Optimization

http://developer.valvesoftware.com/wiki/Lag_Compensation

 Source Multiplayer Networking

http://developer.valvesoftware.com/wiki/Source_Multiplayer_Netwo

rking
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