
Institute of Information Technology

Distributed Multimedia Systems

DISTRIBUTED SYSTEMS

SS 2008

Some basics of multiplayer network

games

[content partly taken from Stefan Zickler (szickler@cs.cmu.edu)]

Klaus Schöffmann 1DS 2008

mailto:szickler@cs.cmu.edu

Institute of Information Technology

Distributed Multimedia Systems

OUTLINE

 Multiplayers Games (MG)

 Why multiplayer?

 Which types of MGs exist?

 How to program network-based MG

 Example project with demonstrations

Klaus Schöffmann DS 2008 2

Institute of Information Technology

Distributed Multimedia Systems

MULTIPLAYER GAMES

 Why Multiplayer Games?

 Humans are better at most strategy than current Ais

 Humans are less predictable

 Can play with people, communicate in natural

language

 Add social aspect to computer games

 Provide larger environments to play in, with more

characters

 Make money as a professional game player

Klaus Schöffmann DS 2008 3

Institute of Information Technology

Distributed Multimedia Systems

TYPES OF MULTIPLAYER GAMES

 Turn-based

 Fully distributed

 (Split)/Shared-Screen

 Small group multiplayer games

 Massive Multiplayer Online Games (MMOGs)

Klaus Schöffmann DS 2008 4

Institute of Information Technology

Distributed Multimedia Systems

TURN-BASED MULTIPLAYER GAMES

+ Easy to implement

No real fun since players need to wait for their

turn

Klaus Schöffmann DS 2008 5

Battle Chess (1988) Whirlwind Snooker (1991)

Institute of Information Technology

Distributed Multimedia Systems

SPLIT-SCREEN AND SHARED-SCREEN

MULTIPLAYER

+ No latency issues, simple and even funny

Scalability, physical location

Klaus Schöffmann DS 2008 6

Mario Kart Double Dash (split-screen, 2003)
Battle Squadron (shared-screen, 1992)

Institute of Information Technology

Distributed Multimedia Systems

SMALL GROUP MULTIPLAYER GAMES

 Ad-hoc, short-lived sessions

 Any client can be server

 Typically limited

number of players

 E.g.

 Shooters

 RTS

 Racing

Klaus Schöffmann DS 2008 7

Counter Strike (1999)

Institute of Information Technology

Distributed Multimedia Systems

MASSIVE MULTIPLAYER ONLINE GAMES

(MMOGS)
 Persistent

 World state

 (Character state)

 Thousands of simultaneous players

 Most MMOGs are Massive Multiplayer Online

Role Playing Games (MMORPGs)

Klaus Schöffmann DS 2008 8

Institute of Information Technology

Distributed Multimedia Systems

MMORPGS

 Ultima Online (1997)

 Isometric view

 3 years development

 1998: > 100,000 players

 2003: 225,000 players

Klaus Schöffmann DS 2008 9

Institute of Information Technology

Distributed Multimedia Systems

MMORPGS

 World of Warcraft (2004)

 Dec 2005: 5 million players

 Dec 2006: 8.3 million players

 Nov 2007: 9.3 million players

 Jan 2008: 10 million players

 2.5 million in North America

 2 million in Europe

 5.5 million in Asia

Klaus Schöffmann DS 2008 10

Institute of Information Technology

Distributed Multimedia Systems

NETWORK ARCHITECTURE

FOR MULTIPLAYER GAMES

Klaus Schöffmann DS 2008 11

Institute of Information Technology

Distributed Multimedia Systems

ARCHITECTURES

 Client-Server

 Peer-to-Peer

 Hybrid

Klaus Schöffmann DS 2008 12

Institute of Information Technology

Distributed Multimedia Systems

CLIENT-SERVER

Klaus Schöffmann DS 2008 13

Institute of Information Technology

Distributed Multimedia Systems

CLIENT-SERVER

 Server handles all important decisions

 Server computes game state only

 Game state is broadcasted to all clients (e.g. every 10ms)

 Every event (even local) must go through server

+ Conceptually simple

+ Easy to implement (e.g. collision detection)

+ Harder to cheat

Server becomes a bottleneck

Bad response/reaction time (even of local player)

Klaus Schöffmann DS 2008 14

Institute of Information Technology

Distributed Multimedia Systems

CLIENT-SERVER

Server‘s main loop Client‘s main loop

Klaus Schöffmann DS 2008 15

Institute of Information Technology

Distributed Multimedia Systems

PEER-TO-PEER

Klaus Schöffmann DS 2008 16

Institute of Information Technology

Distributed Multimedia Systems

PEER-TO-PEER

 Every client computes its own state locally

 Own game state is reported to others

  Load is spread among all players

 Works better if local state prediction (and compensation) of other

players is used

+ Lower latency (one-way-delay)

+ Better response/reaction time (particularly with prediction)

+ No single point of failure

Game state synchronization is more difficult (e.g. collision detection)

Can be easily cheated

Klaus Schöffmann DS 2008 17

Institute of Information Technology

Distributed Multimedia Systems

PEER-TO-PEER

Client‘s main loop

Klaus Schöffmann DS 2008 18

Can be easily

chated!

How to cheat:

1) Ignore incoming hit message

2) Tell others they are hit, although they

aren‘t

3) Move player at arbitrary speed

4) Infinite ammo, armor, ….

Institute of Information Technology

Distributed Multimedia Systems

HYBRID

Klaus Schöffmann DS 2008 19

()

Institute of Information Technology

Distributed Multimedia Systems

HYBRID

 Combining Client-Server with P2P approach

 Load distribution

 Better responsiveness

 Local computation of own state

 Report state through server (harder to cheat!)

 Severy may compute game state as well

 E.g. used for collision detection

 Mostly used in practice

 Typically with client-side prediction of game state and

game state compensation

Klaus Schöffmann DS 2008 20

Institute of Information Technology

Distributed Multimedia Systems

FURTHER ASPECTS

 Many other issues…

 Different performance/latency of participating machines

 Measure latency and consider it in state prediction too

 Randomness

 Avoid cheating

 Why? Because otherwise no one would play the game!

 Design your own protocol (typically based on UDP)

 Own sequencing, retransmission of important packets, etc.

 Implement many other components

 Lobby, Copy protection, Updating, …

Institute of Information Technology

Distributed Multimedia Systems

TYPICAL LATENCY REQUIREMENTS

 RTS

 250 ms not noticable

 250-500 ms playable

 > 500 ms noticeable

 FPS

 < 150 ms preferred

 Car racing

 < 100 ms preferred

Klaus Schöffmann DS 2008 22

Institute of Information Technology

Distributed Multimedia Systems

EXAMPLE PROJECT

Klaus Schöffmann DS 2008 23

Institute of Information Technology

Distributed Multimedia Systems

EXAMPLE PROJECT (RMI BASED)

 Objects moving in a rectangular area

 Can be rotated

 Can accelerate and brake

 Can fire a cannon (ball up

to 3 times reflected by a wall)

 More a demo than a real game

 No collision detection

 No one can win the game 

 Single player version

 430 LOC (with comments)

 Last multiplayer version

 620 LOC (with comments)

Klaus Schöffmann DS 2008 24

Institute of Information Technology

Distributed Multimedia Systems

EXAMPLE PROJECT – GAME STATE

Klaus Schöffmann DS 2008 25

Institute of Information Technology

Distributed Multimedia Systems

EXAMPLE PROJECT – INPUTS

Klaus Schöffmann DS 2008 26

Institute of Information Technology

Distributed Multimedia Systems

EXAMPLE PROJECT – GAME LOOP

Klaus Schöffmann DS 2008 27

Institute of Information Technology

Distributed Multimedia Systems

EXAMPLE PROJECT – GAME LOOP

Klaus Schöffmann DS 2008 28

Institute of Information Technology

Distributed Multimedia Systems

MULTIPLAYER V1

 Client-Server architecture

 Game state simulation is performed on server

 gameUpdate()

 run()

 Input events are sent to server

(and processed on server)

 Server periodically broadcasts state of all

players to all players

  „dumb“ clients

Klaus Schöffmann DS 2008 29

Institute of Information Technology

Distributed Multimedia Systems

MULTIPLAYER V1

 Server Interface (RMI)

 Client Interface (RMI)

Klaus Schöffmann DS 2008 30

State of all players

Institute of Information Technology

Distributed Multimedia Systems

MULTIPLAYER V1

Klaus Schöffmann DS 2008 31

Institute of Information Technology

Distributed Multimedia Systems

MULTIPLAYER V1

 Problems?

 Even local animation might be slow

 Demonstration

Klaus Schöffmann DS 2008 32

Institute of Information Technology

Distributed Multimedia Systems

MULTIPLAYER V2

 Hybrid architecture

 Naive approach:

 Send input events through server to all clients

 Game state simulation is performed locally

(on every client)

  „dumb“ server

Klaus Schöffmann DS 2008 33

Institute of Information Technology

Distributed Multimedia Systems

MULTIPLAYER V2

 Server Interface (RMI)

 Client Interface (RMI)

Klaus Schöffmann DS 2008 34

Institute of Information Technology

Distributed Multimedia Systems

MULTIPLAYER V2 - CLIENT

Klaus Schöffmann DS 2008 35

Institute of Information Technology

Distributed Multimedia Systems

MULTIPLAYER V2 - SERVER

Klaus Schöffmann DS 2008 36

Institute of Information Technology

Distributed Multimedia Systems

MULTIPLAYER V2

 Server performs no game state simulation

 Just input events are stored and broadcasted

 Problems ?

 Will finally result in different simulations due to

different network delays to the server

(and different speed of machines)

 Demonstration

Klaus Schöffmann DS 2008 37

Institute of Information Technology

Distributed Multimedia Systems

MULTIPLAYER V3

 Hybrid architecture

 Every client performs game state simulation

 Own state is broadcasted to other players

(via server)

 A kind of („very simple“) game state prediction

 However, no compensation

Klaus Schöffmann DS 2008 38

Institute of Information Technology

Distributed Multimedia Systems

MULTIPLAYER V3

 Server

 Client

Klaus Schöffmann DS 2008 39

State of one player

Institute of Information Technology

Distributed Multimedia Systems

MULTIPLAYER V3 - CLIENT

Klaus Schöffmann DS 2008 40

Institute of Information Technology

Distributed Multimedia Systems

MULTIPLAYER V3 - SERVER

Klaus Schöffmann DS 2008 41

Institute of Information Technology

Distributed Multimedia Systems

MULTIPLAYER V3 - CLIENT

Klaus Schöffmann DS 2008 42

Just overwrite state

(no compensation)

Institute of Information Technology

Distributed Multimedia Systems

MULTIPLAYER V3

 Still problems?

 Yes: collision detection

 Solution

 Perform game state simulation on server as well

 Use game state on server for collision detection and

inform clients

 Demonstration

Klaus Schöffmann DS 2008 43

Institute of Information Technology

Distributed Multimedia Systems

MORE RESOURCES

 Introduction to Multiplayer Game Programming

http://trac.bookofhook.com/bookofhook/trac.cgi/wiki/IntroductionTo

MultiplayerGameProgramming

 Unreal Networking Architecture

http://unreal.epicgames.com/Network.htm

 The Quake3 Networking Model

http://trac.bookofhook.com/bookofhook/trac.cgi/wiki/Quake3Networ

king

 Latency Compensating Methods in Client/Server In-game Protocol

Design and Optimization

http://developer.valvesoftware.com/wiki/Lag_Compensation

 Source Multiplayer Networking

http://developer.valvesoftware.com/wiki/Source_Multiplayer_Netwo

rking
Klaus Schöffmann DS 2008 44

http://trac.bookofhook.com/bookofhook/trac.cgi/wiki/IntroductionToMultiplayerGameProgramming
http://trac.bookofhook.com/bookofhook/trac.cgi/wiki/IntroductionToMultiplayerGameProgramming
http://unreal.epicgames.com/Network.htm
http://trac.bookofhook.com/bookofhook/trac.cgi/wiki/Quake3Networking
http://trac.bookofhook.com/bookofhook/trac.cgi/wiki/Quake3Networking
http://developer.valvesoftware.com/wiki/Lag_Compensation
http://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking
http://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking

