ALPEN-ADRIA Institute of Information Technology
UNIVERSITAT Distributed Multimedia Systems

KLAGENFURT

DISTRIBUTED SYSTEMS
SS 2008

Some basics of multiplayer network
games

[content partly taken from Stefan Zickler (szickler@cs.cmu.edu)]

Klaus Schoffmann DS 2008 1

mailto:szickler@cs.cmu.edu

ALPEN-ADRIA Institute of Information Technology
UNIVERSITAT Distributed Multimedia Systems

KLAGENFURT

QUTLINE

= Multiplayers Games (MG)
= Why multiplayer?
= Which types of MGs exist?
= How to program network-based MG

= Example project with demonstrations

Klaus Schoffmann DS 2008 2

ALPEN-ADRIA Institute of Information Technology
UNIVERSITAT Distributed Multimedia Systems

KLAGENFURT

MULTIPLAYER GAMES

= Why Multiplayer Games?

Humans are better at most strategy than current Ais
Humans are less predictable

Can play with people, communicate in natural
language
Add social aspect to computer games

Provide larger environments to play in, with more
characters

Make money as a professional game player

Klaus Schoffmann DS 2008 3

ALPEN-ADRIA Institute of Information Technology
UNIVERSITAT Distributed Multimedia Systems
KLAGENFURT

TYPES OF MULTIPLAYER GAMES

= Turn-based

= Fully distributed
= (Split)/Shared-Screen
= Small group multiplayer games
= Massive Multiplayer Online Games (MMOGS)

Klaus Schoffmann DS 2008 4

ALPEN-ADRIA Institute of Information Technology
UN IVERSITAT Distributed Multimedia Systems

KLAGENFURT

TURN-BASED MULTIPLAYER GAMES

+ Easy to implement

— No real fun since players need to wait for their
turn

HARKUS 8 = "aics
i v e 0 i

e
o Bk

Battle Chess (1988) Whirlwind Snooker (1991)

Klaus Schoffmann DS 2008 5

ALPEN-ADRIA Institute of Information Technology
UNIVERSITAT | y Distributed Multimedia Systems

KLAGENFURT Qr” ‘o™
N

SPLIT-SCREEN AND SHARED-SCREEN
MULTIPLAYER

+ No latency issues, simple and even funny
— Scalability, physical location

HIGH - d

gEpe18 " " nipoeete | Bocoe30e

. 3 Battle Squadron (shared-screen, 1992)
Mario Kart Double Dash (split-screen, 2003)

Klaus Schoffmann DS 2008 6

ALPEN-ADRIA Institute of Information Technology
UNIVERSITAT Distributed Multimedia Systems
KLAGENFURT

SMALL GROUP MULTIPLAYER GAMES

= Ad-hoc, short-lived sessions
= Any client can be server
= Typically limited

number of players
= E.Q.

= Shooters

» RTS
= Racing

Counter Strike (1999)

Klaus Schoffmann DS 2008 7

ALPEN-ADRIA Institute of Information Technology
UNIVERSITAT Distributed Multimedia Systems

KLAGENFURT

MASSIVE MULTIPLAYER ONLINE GAMES
(MMOGS)

= Persistent
= World state
= (Character state)

= Thousands of simultaneous players

= Most MMOGs are Massive Multiplayer Online
Role Playing Games (MMORPGS)

Klaus Schoffmann DS 2008 8

ALPEN-ADRIA Institute of Information Technology
UNIVERSITAT Distributed Multimedia Systems

KLAGENFURT

MMORPGS

= Ultima Online (1997)
= |sometric view
= 3 years development
1998: > 100,000 players
2003: 225,000 players

Klaus Schoffmann DS 2008 9

ALPEN-ADRIA Institute of Information Technology
UNIVERSITAT Distributed Multimedia Systems

KLAGENFURT

MMORPGS

= World of Warcraft (2004)

Dec 2005: 5 million players
Dec 2006: 8.3 million players
Nov 2007: 9.3 million players

Jan 2008: 10 million players
= 2.5 million in North America
= 2 million in Europe
= 5.5 million in Asia

Klaus Schoffmann DS 2008

ALPEN-ADRIA Institute of Information Technology
UNIVERSITAT Distributed Multimedia Systems

KLAGENFURT

NETWORKARCHITECTURE
FOR MULTIPLAYER GAMES

Klaus Schoffmann DS 2008 11

ALPEN-ADRIA Institute of Information Technology
UNIVERSITAT Distributed Multimedia Systems

KLAGENFURT

ARCHITECTURES

= Client-Server
= Peer-to-Peer
= Hybrid

Klaus Schoffmann DS 2008 12

ALPEN-ADRIA Institute of Information Technology
UNIVERSITAT Distributed Multimedia Systems

KLAGENFURT

CLIENT-SERVER

Game state
1]
=
. Sy
Game event e Server \ “u
~ ra T
N ~
< ! " \
i \ e -
/ State \ N
/! information . S
» [4 | b

Klaus Schoffmann DS 2008 13

ALPEN-ADRIA Institute of Information Technology
UNIVERSITAT | v Distributed Multimedia Systems

KLAGENFURT

CLIENT-SERVER

= Server handles all important decisions

= Server computes game state only

= (Game state is broadcasted to all clients (e.g. every 10ms)
= Every event (even local) must go through server

+ Conceptually simple

+ Easy to implement (e.qg. collision detection)

+ Harder to cheat

— Server becomes a bottleneck

— Bad response/reaction time (even of local player)

Klaus Schoffmann DS 2008 14

ALPEN-ADRIA Institute of Information Technology
UNIVERSITAT

Distributed Multimedia Systems
KLAGENFURT

CLIENT-SERVER

Server's main loop Client's main loop

while not done
for each player in world
if input exists
get playver command
execute player command

tell player of the results
simulate the world

broadecast to all players

while not done
if player has typed any text
send typed texXt to server
if output from server exists
print output

Klaus Schoffmann DS 2008 15

ALPEN-ADRIA Institute of Information Technology
UNIVERSITAT Distributed Multimedia Systems

KLAGENFURT

PEER-TO-PEER

bl
game state
State update | %
State e !
PRy Flayer-2
_.H'
- -
local State update /
game siate State local
game state
______________ -
; >, State update / %
F’Iay_er-1 N, State Player-3
(active) AN
A local
4 game state
Player-4

Klaus Schoffmann DS 2008 16

ALPEN-ADRIA Institute of Information Technology
UNIVERSITAT Distributed Multimedia Systems

KLAGENFURT

PEER-TO-PEER

= Every client computes its own state locally
= Own game state is reported to others
= - Load is spread among all players

= Works better if local state prediction (and compensation) of other
players is used

+ Lower latency (one-way-delay)
+ Better response/reaction time (particularly with prediction)
No single point of failure
— Game state synchronization is more difficult (e.g. collision detection)
— Can be easily cheated

Klaus Schoffmann DS 2008 17

ALPEN-ADRIA Institute of Information Technology
UNIVERSITAT Distributed Multimedia Systems

KLAGENFURT

PEER-TO-PEER

Client's main loop

while not done
collect player input
collect network input about other players

simulate player .
update player's state if informed it's been hit Can be eaSIly
inform other clients if they've been hit Chated|
move player :

update other player =state (ammo, armor, etc.)
report player state to other clients

How to cheat:

1) Ignore incoming hit message

2) Tell others they are hit, although they
aren't

3) Move player at arbitrary speed

4) Infinite ammo, armor,

Klaus Schoffmann DS 2008 18

ALPEN-ADRIA Institute of Information Technology
UNIVERSITAT Distributed Multimedia Systems

KLAGENFURT

HYBRID

Game state

local

I
e local local game state

game SEQ game state game state Q

Player-1 Player-2 Player-3 Player-4
(active)

—_— Game event

— — — —gw State update

Klaus Schoffmann DS 2008 19

ALPEN-ADRIA Institute of Information Technology
UNIVERSITAT Distributed Multimedia Systems

KLAGENFURT

HYBRID

= Combining Client-Server with P2P approach
= Load distribution
= Better responsiveness
= Local computation of own state
= Report state through server (harder to cheat!)
= Severy may compute game state as well
= E.g. used for collision detection

= Mostly used in practice

= Typically with client-side prediction of game state and
game state compensation

Klaus Schoffmann DS 2008 20

ALPEN-ADRIA Institute of Information Technology
UNIVERSITAT | y Distributed Multimedia Systems

KLAGENFURT

FURTHER ASPECTS

Many other issues...
= Different performance/latency of participating machines
= Measure latency and consider it in state prediction too
= Randomness
= Avoid cheating

= Why? Because otherwise no one would play the game!
Design your own protocol (typically based on UDP)

= Own seguencing, retransmission of important packets, etc.
Implement many other components

* Lobby, Copy protection, Updating, ...

ALPEN-ADRIA Institute of Information Technology
UNIVERSITAT Distributed Multimedia Systems
KLAGENFURT

TYPICAL LATENCY REQUIREMENTS

= RTS

= 250 ms not noticable
= 250-500 ms playable
= > 500 ms noticeable

= FPS
= <150 ms preferred

= Carracing
= <100 ms preferred

Klaus Schoffmann DS 2008 22

ALPEN-ADRIA Institute of Information Technology
UNIVERSITAT Distributed Multimedia Systems

KLAGENFURT

EXAMPLE PROJECT

Klaus Schoffmann DS 2008 23

ALPEN-ADRIA Institute of Information Technology
UNIVERSITAT | y Distributed Multimedia Systems

KLAGENFURT

EXAMPLE PROJECT (RMI BASED)

= Objects moving in a rectangular area
= Can be rotated i [SlE=]
Can accelerate and brake

Can fire a cannon (ball up
to 3 times reflected by a wall)

More a demo than a real game N
= No collision detection L
= No one can win the game © *
Single player version
= 430 LOC (with comments)
Last multiplayer version
= 620 LOC (with comments)

Klaus Schoffmann DS 2008 24

ALPEN-ADRIA Institute of Information Technology
UNIVERSITAT Distributed Multimedia Systems

KLAGENFURT

EXAMPLE PROJECT — GAME STATE

/fconstants

static int PWIDTH = 500; // =zize of panel

static int PHEIGHT = 400;

final static float maxSpeed 25; J/maximum speed of robot

final ztatic float minfSpeed 0; //minimum =zpeed of robot

final static int SPEED DIV = 3; //speed i1z divided by this wvalue

final static int MAXY WALLS 3; //maximum number of reflections of cannon on a wall

int botImgWidth;
int botImgHeight;

int botID;

static int botcount = 0O;

boolean acceleratePressed = false:
bocolean brakePressed = false;
boolean leftPressed = false;
boolean rightPressed = false:
boolean firePrezsed = falsze;

//game state

boolean cannonaActive = false:

int bot¥ = 200, botY 200, botRot = 0;
int cannoni¥, cannonY, cannonBot;

float speed = minZpeed:

float cannonfSpeed;

int cannonWallCount;

Klaus Schoffmann DS 2008 25

ALPEN-ADRIA Institute of Information Technology
UNIVERSITAT Distributed Multimedia Systems

KLAGENFURT

EXAMPLE PROJECT — INPUTS

private wveold initEeyListensr ()

i
addEeyListener (new Eevadapter() |

public void keyvPressed (KeyvEvent &)

{
int keyCode = =.getEevyCode ()

if (keyCeoede == EKeyEvent.VE _UP) {
botstate[0] .acceleratePressed = true;

H
LV
}

public wvoid keyReleased (EevEvent &)
{
int keyCode = =.getRevyCode ();

if (keyCode == KeyEvent.VEK UP) {
botstate [0] .acceleratePraegssed = false;

Klaus Schoffmann DS 2008 26

ALPEN-ADRIA
UNIVERSITAT

Institute of Information Technology
KLAGENFURT

Distributed Multimedia Systems

EXAMPLE PROJECT — GAME LOOP

long periocd = 20;

puklic woid run()

/* Repeatedly update,
{

render, =zlesep */

long gamseStart = System.currentTimeMillis (), gameSimTime = 0;
runhing = trus;

while (running) |
long gameTime = System.currentTimeMillis ()

while (gameZimTime < gameTime) |
gameUpdate () ;

gameSimTime += pericd;

- gameStart;

}

gameRender () ;
paintScreen () ;
Thread.vield () ;

;¢ render to a buffer
didraw buffer to screen

H

Syztem.exit (0); // =0 encleosing JFrame/JApplet exits
v /S end of run()

Klaus Schoffmann DS 2008 27

ALPEN-ADRIA Institute of Information Technology
UNIVERSITAT Distributed Multimedia Systems

KLAGENFURT

EXAMPLE PROJECT — GAME LOOP

private vold gameUpdate ()

{
updateCounter++;

for (Boti3tate bs : botstate) |
bz. handleRotationChanges () ;
bz .updateBot () ;
bz, handleliccBrake (updateCounter) ;
bs.handleFire () ;
bz . updateActiveCannon () ;

Klaus Schoffmann DS 2008 28

ALPEN-ADRIA Institute of Information Technology
UNIVERSITAT Distributed Multimedia Systems

KLAGENFURT

MULTIPLAYER V1

= Client-Server architecture

= (Game state simulation is performed on server
= gameUpdate()
= run()

= |nput events are sent to server
(and processed on server)

= Server periodically broadcasts state of all
players to all players

= - dumb” clients

Klaus Schoffmann DS 2008 29

ALPEN-ADRIA Institute of Information Technology
UNIVERSITAT Distributed Multimedia Systems

KLAGENFURT

MULTIPLAYER V1

= Server Interface (RMI)

pukblic interface IZerver extends Remote |
puklic enum Keyv {Left, Right, Up, Down, Fire}:;
int Join{IClient client) throws RemoteException;

vold keyvEvent (int clientID, Eev key, boolean pressed) throws RemoteExcephbion;:
vold leawe (IClient client) throws RemoteExceptbion;

= Client Interface (RMI)

puklic interface IClient extends Remote |

vold stateUpdate (Bot3tate[] state) throws RemoteException;

State of all players
DS 2008 30

ALPEN-ADRIA Institute of Information Technology
UNIVERSITAT Distributed Multimedia Systems
KLAGENFURT

MULTIPLAYER V1

puklic claszz BroadcastThread extends Thread |

static int LATENCY = 100;
IferverImpl serverlr;:

pukbklic BroadcastThread (IServerImpl server)
this.server = server;

}

pukblic volid runi) |
while ({(trus) |
gerver. broadcast () ;
try |
sleep (LATENCY) ;
Vo ocatch (InterruptedException e) {1}

Klaus Schoffmann DS 2008 31

ALPEN-ADRIA Institute of Information Technology
UNIVERSITAT Distributed Multimedia Systems

KLAGENFURT

MULTIPLAYER V1

= Problems?
= Even local animation might be slow

= Demonstration

Klaus Schoffmann DS 2008 32

ALPEN-ADRIA Institute of Information Technology
UNIVERSITAT Distributed Multimedia Systems

KLAGENFURT

MULTIPLAYER V2

= Hybrid architecture

= Nalve approach:
= Send input events through server to all clients

= Game state simulation is performed locally
(on every client)

= > dumb”® server

Klaus Schoffmann DS 2008 33

ALPEN-ADRIA Institute of Information Technology
UNIVERSITAT Distributed Multimedia Systems

KLAGENFURT

MULTIPLAYER V2

= Server Interface (RMI)

public interface IZServer extends Remote |
pubklic enum Eev {Left, Right, Up, Down, Fire}:
int Join(IClient client) throws RemoteException:

vold kevEvent (int clientID, Eev key, boolean pressed) throws RemoteException;
vold leave (IClient client) throws RemoteException:

= Client Interface (RMI)

puklic interface IClient extends Remote |

vold statelUpdate (BotState[] state) throws RemoteException:

Klaus Schoffmann DS 2008 34

ALPEN-ADRIA Institute of Information Technology
UNIVERSITAT Distributed Multimedia Systems

KLAGENFURT

MULTIPLAYER V2 - CLIENT

private vold initEeyListener ()

i
addEevLizstener | new EevAdapter () |

public void kevPressed (KevEvent =) |
int keyCode = e.getKevCode ();

if (keyCode == KeyEvent.VEK UP) |
gserver.kevEvent (clientID, EKev.Up, trus);

}
L A

}

public void kevReleased (EevEvent =) |
int keyCode = e.getKevCode () ;

if (keyCode == EKeyEvent.VE UP) {

server. keyvEvent (clientID, EKev.Up, false);

}
L A

(B

Klaus Schoffmann DS 2008 35

ALPEN-ADRIA Institute of Information Technology
UNIVERSITAT Distributed Multimedia Systems

KLAGENFURT

MULTIPLAYER V2 - SERVER

pukblic wvolid keyvEvent (int clientID, Eevy key, koolean pressed) |
if (pressed) |

if (key == Eey.Up)
botztate[clientID] . acceleratePressaed = true;
£l
Poelse |
if (key == Eey.Up)
botsgtate[clientID] . acceleratePregssed = falsze;
£l

}

broadcast () ;

}

vold broadcast () |
for (IClient < : clients) |

try |
o.statelUpdate (botstate) ;
i catch (RemoteException =) {1}

}

pukblic vold leave (IClient client) |
LA A
'

Klaus Schoffmann DS 2008 36

ALPEN-ADRIA Institute of Information Technology
UNIVERSITAT Distributed Multimedia Systems

KLAGENFURT

MULTIPLAYER V2

= Server performs no game state simulation
= Justinput events are stored and broadcasted

= Problems ?

= > Will finally result in different simulations due to
different network delays to the server
(and different speed of machines)

= Demonstration

Klaus Schoffmann DS 2008 37

ALPEN-ADRIA Institute of Information Technology
UNIVERSITAT Distributed Multimedia Systems

KLAGENFURT

MULTIPLAYER V3

= Hybrid architecture
= Every client performs game state simulation

= Own state is broadcasted to other players
(via server)

= Akind of (,very simple®) game state prediction
= However, no compensation

Klaus Schoffmann DS 2008 38

ALPEN-ADRIA Institute of Information Technology
UNIVERSITAT Distributed Multimedia Systems

KLAGENFURT

MULTIPLAYER V3

= Server

puklic interface IServer extends Remote |
pukblic enum Eevy {Left, Right, Up, Down, Fire};
int jein(IClient client) throws RemoteException:

vold stateUpdate (IClient client, int clientID, EotState state) throws RemoteException:
vold leave (IClient client) throws RemoteExcephtilion;

= Client

puklic interface IClient extends Remote |

vold stateUpdate (int clientID, BotState =tate) throws RemcoteException;

\ State of one player

Klaus Schoffmann DS 2008 39

ALPEN-ADRIA Institute of Information Technology
UNIVERSITAT Distributed Multimedia Systems

KLAGENFURT

MULTIPLAYER V3 - CLIENT

pubklic class ClientBroadeoast extends Thread |
static int LATENCY = 100;

FamePanel gp:
IServer server:

public ClientBroadcast (GamePanel gp, IServer server) |

thi=s.gp = dgp:
this.gerver = cervers

}

pukblic woild runi) |
while (true) |

Try |
server.statelpdate (gp.iclient, gp.clientID, gp.botstate[gp.clientID]);
gleep (LATENCY) ;

} catch (RemoteException &) |
Svstem.out.println{"Error with broadcast! ") ;

Vo catch (InterruptedException e) {3

Klaus Schoffmann DS 2008 40

ALPEN-ADRIA Institute of Information Technology
UNIVERSITAT Distributed Multimedia Systems

KLAGENFURT

MULTIPLAYER V3 - SERVER

public wvoid statelUpdate (IClient client, int clientID, EBotState state)
throws RemoteException |
for (IClient < : clients)
{
if (lec.equals (clientl)) |
Try |
o.stateUpdate (clientID, state);
i catch (RemoteException &) {1}

Klaus Schoffmann DS 2008 41

ALPEN-ADRIA
UNIVERSITAT
KLAGENFURT

Institute of Information Technology
Distributed Multimedia Systems

MULTIPLAYER V3 - CLIENT

public class IClientImpl extends UnicastRemoteObject implements IClient |

GamePanel gp:

public IClientImpl (GamePanel gp) throws RemoteException
{

this.gp = gp;
}

puklic woid ztateUpdate (int clientID, EotState s=tate)
{

gp.botstate[clientID] = (BotZtatelstate.clone ()
1

Just overwrite state
(no compensation)

Klaus Schoffmann DS 2008 42

ALPEN-ADRIA Institute of Information Technology
UNIVERSITAT Distributed Multimedia Systems

KLAGENFURT

MULTIPLAYER V3

= Still problems?
= Yes: collision detection

= Solution
= Perform game state simulation on server as well

» Use game state on server for collision detection and
Inform clients

= Demonstration

Klaus Schoffmann DS 2008 43

ALPEN-ADRIA Institute of Information Technology
UNIVERSITAT Distributed Multimedia Systems

KLAGENFURT

MORE RESOURCES

= Introduction to Multiplayer Game Programming
http://trac.bookofhook.com/bookofhook/trac.cqi/wiki/IntroductionTo
MultiplayerGameProgramming

= Unreal Networking Architecture
http://unreal.epicgames.com/Network.htm

= The Quake3 Networking Model
http://trac.bookofhook.com/bookofhook/trac.cqgi/wiki/Quake3Networ
King

= Latency Compensating Methods in Client/Server In-game Protocol
Design and Optimization
http://developer.valvesoftware.com/wiki/Lag Compensation

= Source Multiplayer Networking
http://developer.valvesoftware.com/wiki/Source Multiplayer Netwo

rking
Klaus Schoffmann DS 2008 44

http://trac.bookofhook.com/bookofhook/trac.cgi/wiki/IntroductionToMultiplayerGameProgramming
http://trac.bookofhook.com/bookofhook/trac.cgi/wiki/IntroductionToMultiplayerGameProgramming
http://unreal.epicgames.com/Network.htm
http://trac.bookofhook.com/bookofhook/trac.cgi/wiki/Quake3Networking
http://trac.bookofhook.com/bookofhook/trac.cgi/wiki/Quake3Networking
http://developer.valvesoftware.com/wiki/Lag_Compensation
http://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking
http://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking

