
VK Computer Games

Mathias Lux & Horst Pichler
Universität Klagenfurt

This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 2.0 License. See http://creativecommons.org/licenses/by-nc-sa/2.0/at/

http://www.uni-klu.ac.at

2

Agenda

● Collision Detection
● Game Framework

� Sprites
� Sprite-behavior
� Bricks

● Short Introduction into AI
● Your Game … some advices

http://www.uni-klu.ac.at

3

The Game Loop Revisited

Double Buffering with repaint-method

http://www.uni-klu.ac.at

4

Collision Detection

● Detect if two objects try to occupy the same space at
the same time (overlap)

● Needed in
� physical simulations
� computational geometry

• CAD
• GIS

� robotics
� computer games

[www.vis.uni-stuttgart.de/~frisch/h/diss.htm]

http://www.uni-klu.ac.at

5

Game Loop + Collision

Remark: example assumes, that there is no z-axis

http://www.uni-klu.ac.at

6

Detection Types

● a priori
� predict upcoming collision
� objects never really penetrate
� respond to collision before it occurred

● a posteriori
� advance movement by small time step
� check if collision occurs
� respond to collision after it occurred

much easier; used in games

http://www.uni-klu.ac.at

7

2D Games with Static Arrays

Object moves 1 field per round

Collision:
(x1‘ == x1) and (y1‘ == y2)

http://www.uni-klu.ac.at

8

Circles

objects move n pixels per loop
collision detection with Pythagoras:

V = sqrt((x2-x1)2 + (y2-y1)2)
if V < r1 + r2 collision

http://www.uni-klu.ac.at

9

Problems with Circles

● Easy to calculate, but … ● Bounding box

Bounding Volume

http://www.uni-klu.ac.at

10

Rectangles

Object moves n pixels per loop
Collision detection: „inelegant“ approach

check possible combinations of lines
[A1B1xA2D2, A1B1xB2C2, …]

if lines cut collission

http://www.uni-klu.ac.at

11

Example

Collision detected
B1C1xA2D2
bounce left (if jumps)
stop x-movement

Collision detected
C1D1xA2B2
new ground-level
stop y-movement

Collision detected
C1D1xA2B2
bounce down
reverse y-movement

[The Great Giana Sisters, Rainbow Arts: http://www.youtube.com/watch?v=zrRHAisdIRg]

http://www.uni-klu.ac.at

12

Example

● Optimization issues

� check only objects in
rows and/or columns
of relevant x/y-coords

� check moving objects
only (?)

[The Great Giana Sisters, Rainbow Arts]]

http://www.uni-klu.ac.at

13

Convex Polygons

● Collision detection:

� bounding box
• imprecise

� checking every possible pair?
• what exactly means “possible”?
• complex polygons meshes!

� prerequisites:

http://www.uni-klu.ac.at

14

Useful Java Methods
● Interface Shape (objects with geometric shape)

� boolean: contains(Point2D p)
� boolean: contains(Rectangle2D r)
� Rectangle2D: getBounds2d()
� PathIterator: getPathIterator(AffineTransformation t)

● Implementing classes
� Area
� Polygon
� Rectangle
� Line2D
� CubicCurve2D, QuadCurve2D
� …

● Polygon
� addPoint(int x, int y)

● Area
� constructor: Area(Shape s)
� Rectangle2D: getBounds(Area a)
� boolean: isPolgonyal()
� void: add(Area a)
� void: subtract(Area a)
� void: intersect(Area a)
� void: exclusiveOr(Area a)

subtractadd

intersectexclusiveOr

collision detection with intersect
but: no projection vector!

http://www.uni-klu.ac.at

15

Example

call: detect(polygon1, polygon2)

[See Code Example: PolygonCollision]

http://www.uni-klu.ac.at

16

Separating Axis Theorem

● Intersect-method provides no projection vector
separating axis theorem

● Convex shape: an object is convex if for every
pair of points within one object, every point on
the connecting straight line is within the object

http://www.uni-klu.ac.at

17

Separating Axis Theorem

● Given two convex shapes, if we can find an axis
along which the projection of the two shapes
does not overlap, the shapes don’t overlap.
[Herman Minkowski, 1864-1909]

Collision detection:
no separating axis collision

or:
1 separating axis no collision

problem:
infinite number of axis to test?

http://www.uni-klu.ac.at

18

Separating Axis Theorem

● For convex polygon meshes: each faces normal
is used as an axis to test for separating axis

[projection]

http://www.uni-klu.ac.at

19

Collision Detection with SAT

no collision! collision!

[collision]

http://www.uni-klu.ac.at

20

Fast Moving Objects

position at t1

position at t2

collision???

sweep test

collision

● Sweep test
� create a new polygon

along the trajectory
� test collision with the new

polygon

● Multi-sampling
� create additional

polygons in between
� test for each of them

Tutorials and further examples [http://www.harveycartel.org/metanet/tutorials/tutorialA.html#jakobsen
]

http://www.uni-klu.ac.at

21

Is this sufficient?

R-Type, Irem[http://www.youtube.com/watch?v=xPv5lqpA4c4&feature=related]

http://www.uni-klu.ac.at

22

Multiple Bounding „Boxes“

Big sprite is non-convex,
therefor compose it from
several convex polygons

… Bounding Volumes

http://www.uni-klu.ac.at

23

Collisions on the Pixel-level

● to avoid collision „over-
detection“ we need an
even more accurate
method
� first test on polygon-level
� then test on pixel-level

http://www.uni-klu.ac.at

24

Collission Response

● Change the object‘s status (e.g. to „exploding)

● Remove one or both objects

● Projection methods
� find the smallest possible displacement
� direct modification of object positions

● Penalty force methods [collision.html]
� use spring forces to pull object out of collision
� modify the objects acceleration / direction

● Impulse based methods
� use changes in velocity to prevent interpenetration (e.g. stop object)

http://www.uni-klu.ac.at

25

Games Framework

● Bug Runner
� see also: Java-code

Killer Game Programming in Java, Andrew Davison]

http://www.uni-klu.ac.at

26

xxx

Bug Runner Class Diagram

http://www.uni-klu.ac.at

27

State Chart State Transition
Table

LockedLockPassUnlocked

UnlockedThanksCoinUnlocked

LockedAlarmPassLocked

UnlockedUnlockCoinLocked

New StateActionEventCurrent State

http://www.uni-klu.ac.at

28

Transition Table Java Code

http://www.uni-klu.ac.at

29

Ball Sprite State Diagram

http://www.uni-klu.ac.at

30

Bug (Player) Sprite State Diagram

http://www.uni-klu.ac.at

31

JumpingJack - Bricks

● Brick-images are stored in an image-strip
� /images/

● Brick-patterns are stored in text-files
� /images/bricksinfo.txt

44444
222222222

111
2222

11111
444
444

22222 444 111
1111112222222 23333 2 33 44444444

00 000111333333000000222222233333 333 2222222223333301
00000000011100000000002220000000003300000111111222222234

0 32 41

http://www.uni-klu.ac.at

32

JumpingJack - Drawing
● Drawing sequence

� background
• wrap-around ribbons
• parallax scrolling)

� bricks
� sprites

http://www.uni-klu.ac.at

33

JumpingJack – Offset for
Bricks

http://www.uni-klu.ac.at

34

„Intelligence“ in Games

● originally „enemy-intelligence“ was stored in
fixed patterns, e.g. Pacman:
� Blinky – chases the player
� Pinky – ambushes (roundabout)
� Inky – random movement, starts chasing when close
� Clyde – stupid, moves completely randomly
[remark: combination Blinky-Pinky is deadly]

● usually bosses in „boss-fights“ have fixed
movement patterns

Pacman [http://www.youtube.com/watch?v=OsLGvm5-29w]

http://www.uni-klu.ac.at

35

AI in (non-board) Games

● In the 1990s
� pathfinding problems
� incomplete information algorithms („fog of war“)

● In the 2000s
� machine learning algorithms (e.g. neural networks)
� emergent behavior

• study and design of complex/multi-agent systems
• swarm-intelligence (flocking of birds)

enemies without „cheating“ AI

Fog of War – Warcraft II [http://www.youtube.com/watch?v=OsLGvm5-29w]

http://www.uni-klu.ac.at

36

Pathfinding with A*

Images taken from Pathfinding for Beginners [http://www.policyalmanac.org/games/aStarTutorial.htm]

● Given
� terrain
� starting position
� goal position

● Find shortest path
� span tree

• calculate new position according to possible movement
• calculate f = g + h

– g … cost from starting position (covered distance)
– h … heuristic: estimated distance to goal

• span tree from new position
• stop

– if shortest path found
– depth or time limit reached

� Move to first position on calculated shortest path

● Admissibility Theorem
� h must be less or equal to the real rest-distance!
� for our example: h calculated by the manhattan distance

http://www.uni-klu.ac.at

37

Pathfinding with A*

http://www.uni-klu.ac.at

38

AI-Thread

● Own thread for AI-calculations
� PathFinder(GameState state) implements Runnable

• run [implements loop]
– calculate path(s)
– store path(s) information in game state
– sleep(n), value of n depends on

» wanted behavior
» CPU utilization

● Attention:
� synchronization!

http://www.uni-klu.ac.at

39

Some thoughts on Tactial AI

● Tactical movement
� avoid cones of fire
� do not move in „lines of sight“
� seek cover: move to cover locations (predefined)

shortest path can be modified quite easily
● Choke point analysis

� choke-point = points where a player must go through
� use navigation graph to find choke points

• graph expresses connections between „rooms“ and „corridors“
� go to choke points
� wait for player (ambush)

● Influence Maps
� dominance of teams per area
� needed for tactical reasoning

● Commander AI
� determine kinds of units available
� select pre-defined tactics based on available information (e.g. „tank-rush“ in C&C)
� produce needed units
� command units to hot spots, choke points, under-dominated areas

Line of Sight – Commandos 3 [http://www.youtube.com/watch?v=4CLp3D5h6RU&feature=related]

http://www.uni-klu.ac.at

40

The game project

Schedule:

● Schedule
� Deadline: 20.06.2008

● Organizational Issues
� form groups (3 students)

Source: http://www.cs.wisc.edu/graphics/Courses/679-s2007/Main/GameDesign

http://www.uni-klu.ac.at

41

It‘s still just software

● try to finish the brainstorming & design phase
before you start programming

● late design changes will cost a lot of time
● differentiate between must-have and nice-to-

have
● try to split it up in packages

� allows to develop in a distributed fashion
� synchronization

• define interfaces
• create mock-ups

http://www.uni-klu.ac.at

42

Prototyping Approach …

● gather a kickass team and a good advisor
● gather concept art & music to create an emotional target
● constrain creativity (you‘ll want it even more)
● complexity is not necessary for fun
● create a sense of ownership
● mindset is as important as talent
● enforce short development cycles
● build towards a well defined game goal
● develop in parallel
● if you can get away with it, fake it

How to protoype a game in 7 days [http://www.gamasutra.com/features/20051026/gabler_pfv.htm]

http://www.uni-klu.ac.at

43

Team Work

[http://www.gamasutra.com/features/20051026/gabler_pfv.htm]

http://www.uni-klu.ac.at

44

Plan carefully

● planning
� try to make a schedule (I know: it‘s hard to estimate …)
� be fair to your team-mates and hold the schedule!
� a lot of time is usually consumed by testing, debugging and

refinement

● be aware of other engagements and commitments
� there are still other courses & exams
� summer is approaching
� soccer fans: EM is approaching
� do not underestimate the time you will have to invest on new

tools (graphics, sound, etc.)

http://www.uni-klu.ac.at

45

Last but not least

● be motivated, but not over-motivated
� hard deadline!

● be aware of your own limits
� a C&C-clone would certainly be a great game, but ….

